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e Part I: Introduction to Impedance

Humans and otherwise (a refresher course)

for a constant stiffness (G, or k)
/\ N

— Fundamental Concepts
* bandwidth, damping ratio
» feedforward / feedback

* biological systems

— muscle properties, co-
contraction, reflex loops

— Historical Perspectives
* early studies of human stiffness
* trajectory control
* internal models
* stiffness modulation




Human Motor Control

How does the brain activate muscles in
order to generate a desired movement?

Feedforward versus Feedback Control
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Are targeted arm movements controlled in a
feedfoward or feedback manner?

* Train a monkey to point to an
illuminate target, without
vision of the arm.

* On random trials, suddenly
move the monkeys arm to the
target position, just before the
monkey starts to move the
arm itself.

A. Polit and E. Bizzi | Neurophysiol. 1979 42 :183-194.

Assuming that the monkey is unaware that the arm has been moved to
the target, what will be the movement if feedforward or feedback
control of force is used?
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Predictions Experimental Results
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The motor command appears to be a
smooth transition of desired positions.
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Did Mother Nature study control

. engineering?
 Basic Control Theory

Engineering for Neuroscientists
— feedforward and feedback control

— effects of impedance modulation

* Elements of the human motor system

Neurophysiology for Engineers
— Actuators, Sensors, Circuits
* Models of Human Motor Control

— Theories, History, Experimental Evidence

Simple feedback control of
position.
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What s missing?
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Position feedback requires velocity
feedback to dissipate energy.
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Position feedback requires velocity
feedback to dissipate energy.

desired trajectory

— velocity

position

——— position

time

p: no damping—*

f=k(-1))-bi 1"

p: with damping
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What are the eftects of G, and G,?

(i.e. What are the effects of k£ and 5?)

for a constant stiffness (G, or k) for a constant damping (G, orb)
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Feedback Control

» Based on error signals between the desired
trajectory and the measured position.

* No need to compute the inverse dynamics
of the system you want to control.

« Performance depends on the feedback
gains:
— high stiffness = fast performance
— high damping = low oscillations

Did Mother Nature study control
engineering?

* Elements of the human motor system
Neurophysiology for Engineers

— Actuators, Sensors, Circuits




Elements of the human motor
system.

from spinal cord
o motor neuron ‘

muscle

joint

Sensory organs are embedded 1n muscles,
in parallel with the contractile elements

muscle

fuseau neuromusculaire

terminaison terminaison
primaire secondaire

afferents: 1, and II fibres

E. Godaux et G. Cheron Le Mouvement (Medsi-McGraw-Hill,
France).




Spindle organ afferents are sensitive to muscle stretch.
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From: E. Godaux et G. Cheron Le Mouvenent (Medsi-McGraw-Hill,
France).

Spindle fibers carry information about muscle
length and lengthening velocity.

Spindle organs are also equipped with contractile
elements of their own.

70 la

muscle

fuseau neuromusculaire

terminaison terminaison
primaire secondaire

afferents: 1, and II fibres
efferents: o and y motor neurons

Activating y will evoke activity in I, and II afferent fibres if
there 1s no concomitant shortening of the muscle.




Motor System Physiology
(just the minimal basics!)

Muscles are made up of active contractile elements (extrafusal
fibers) and sensory organs (intrafusal fibres).

Efferent o motor neurons innervate the extrafusal fibers.

Afferent type 1, and type II never fibers emanating from the
intrafusal fibers (muscle spindles) respond to muscle stretch
(static length and velocity)

Efferent y motor neurons innervate the contractile elements of
the muscle spindles, allowing central modulation of the
spindle output.

Did Mother Nature study control
engineering?

 Models of Human Motor Control

— Theories, History, Experimental Evidence




If movement of the arm 1s
feedback driven ...
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A. Polit and E. Bizzi | Neurgphysiol. 1979 42 :183-194.

. how to implement a feedback servo
with biological hardware?




How to implement a feedback servo with this?
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Merton’s (1953) reflex servo control hypothesis
* vy specifies the desired trajectory
» muscle spindles compare desired and actual length

« [, and II afferents activate a proportional to the difference

FIGURE 2. Merton’s (1953) refiex servo control model.

From: J. Mclntyre and E. Bizzi J. Motor Behav. 1993.

Feldman’s Equilibrium Point Hypothesis

) me=Bynaptic Stretch Reflex

» Central command A sets the
threshold of the stretch reflex

» The desired position (equilibrium
position) is determined by setting
N\’s for agonist/antagonist pairs.

See Feldman, A. J. Mot. Behav. 1986.
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What happens if feedback 1s interrupted?

)\, MeoneSynaptic Stretch Roflox

Pathwepe

A. Polit and E. Bizzi | Neurgphysiol. 1979 42 :183-194.

The monkeys were still able to achieve the
target position!




Bizz1’s Equilibrium Point Hypothesis

tension
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Muscles present spring-like properties.
Increasing o decreases the rest-length.

Equilibrium positions can be specified by a
activation in agonist/antagonist pairs.

Servo control is achieved through muscle
mechanical (spring-like) properties.
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FIGURE 3. Block diagram of the a equilibrium-point model
of motor control.

From: J. McIntyre and E. Bizzi J. Motor Beba.
1993.

Do reflexes serve a purpose?
Of course!

Control 2 Patient 1
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J. Gordon, MF Ghilardi and C Ghez J. Neurophysiol.
1995.

Reflexes are essential
to the accurate control
of movement.
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Reflexes modulate
effective muscle stiffness.




A more accurate model includes both muscle
properties and reflexes to provide feedback
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FIGURE 5. Consistent formulation of the equilibrium-
point model. The model is consistent with alpha-gamma
coactivation, deafferented monkey experiments, and re-
flex function.

Feedforward Control: compute control based on knowledge of physics

inverse model
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Summary

» A fundamental question:

Feedforward or feedback control?

» Evidence for feedback control of biological
movement

 Plausible biological mechanisms for implementing
feedback-based motor control.
— Merton’s servo control hypothesis
— Feldman’s A equilibrium point hypothesis
— Bizzi’s a equilibrium point hypothesis
» Passive mechanical properties of muscles are
important!
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Two mathematically equivalent
formulations.

Combined: compute feedforward, correct with feedback
inverse model
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Disturbance Rejection

How does one reduce the effects of an external disturbance?
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Disturbance Rejection via Impedance
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Which mechanism for disturbance

compensation?
! = external
perturbation
increase
impedance
I s external
l perturbation
= external
1 l perturbation
/~
compute /

FF correction

A Key Experiment
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Subjects are seated at the center of a circular room.
The entire room spins continuously at 60°/s.

Foo \
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@ o=e0sewt velocity. After a few seconds, the subject has no

_ ~ perception that the room is turning.
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P Dizio and J Lackner J. Neuroplysiol. 1994. A For=-2m(0x V)
Subjects perform a reaching movement toward a target -
located straight ahead. VT
The interaction of the hand linear velocity and the

rotation of the room results in a Coriolis force.

The Coriolis force is perpendicular to the hand velocity

and proportional in amplitude.

\_,/7(1)

no velocity = no Coriolis Force

The vestibular system is sensitive to changes in angular




Results
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Question: Is this evidence for feedforward
or feedback control of movement?

Answer: YES!
 Feedback

— Correction of hand trajectory B
toward the target. _
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After Effects
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= external

increase l perturbation
impedance

i external
perturbation

— -

/
7
z > N E external

perturbation‘
compute R
FF correction -
/I
/
s d >
Another Key Experiment

Divergent Force Field

E Burdet et al. Nature 2001.




Another Key Experiment

Divergent Force Field
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Another Key Experiment

Divergent Force Field
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Adaptation of Hand Impedance
200 N 1 4 Movement

direction
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al. Nature 2001.

Conclusions / Discussion

Combined feedforward/feedback control of
force for the control of limb trajectories
Feedforward correction of disturbances

— must be predictable

Feedback correction of disturbances

— increase impedance to reject external forces

The brain can use both mechanisms by
specifying EPs and as well as
(instead of?) forces
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