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Introduction
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Common reasons for intrinsic elasticity:

Better safety

Better energy efficiency

Better robustness

None of these arguments can be answered uniquely with yes or no

(except maybe robustness, but this still has to prove in the full
context of applications, reliability,...). It depends on the task.
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Problems we investigate

At DLR we investigate following problems:

Safety for VIA: injury analysis & collision detection and
reaction

Optimal control for VIA: performance increase through elastic
energy storage and release

Motion and interaction control: vibration damping, impedance
control

Elasticity for cyclic manipulation motions

Learning impedances based on human motor control insights
(together with Imperial College)
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Safety for VIA
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Collision experiments
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Momentum based detection

Rigid body dynamics

M(q)q̈ + C (q, q̇)q̇ + g(q) = τ J + τext (1)

p = M(q)q̇, (2)

Reformulated dynamics

ṗ = τ J − β(q, q̇) − τext (3)

where

β(q, q̇) = n(q, q̇) − Ṁ(q)q̇ = C (q, q̇) + g(q) − Ṁ(q)q̇ (4)

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

Momentum based detection

It can be shown that the observed disturbance r̂ is a
component-wise filtered version of the real external torque τ ext:

r̂ i =
1

sT i
O + 1

τ i
ext =

K i
O

s + K i
O

τ i
ext ≈ τ i

ext ∀i ∈ {1, ..., n} (5)

r̂ = (r̂1 · · · r̂n). (6)

The dynamics of r̂ is

ˆ̇r = −KO r̂ + KOτ ext. (7)
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Collision detection: soft-tissue injury
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VIA impact cases

There are two important impact cases.

1 collisions without preceding elastic energy storage and release

2 collisions with preceding elastic energy storage and release

Up to now:

motor and link collide at the same velocity (e.g. original
work by Bicchi, Khatib)

→ decoupling improves the impact characteristics (however
only for certain conditions, see next sllide)

speed gain was not considered at all (case 2)

However, it is well known that velocity influences HIC (Head Injury
Criterion) more than quadratically, whereas inertia shows a
saturation effect.
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Collision LWR-human head
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→ Joint stiffness reduction does not help for the full manipulator
LWR-III. It is already decoupled!
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Collision LWR-human head

Robot

B
x

M
x

Human

M
H

K
H

K
J ,x

Bx > Mx Mx ≈ MH KJ,x << KH (8)

Mx = 4.0 kg, KH = 103 kN/m
→ Decoupling already present for realistic link inertia and
moderate (non-desired) joint stiffness!
→ These are conditions of a full scale robot!
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VSA: Case 1
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F
e
x
t
[N
]

 

 

σ = 1deg
σ = 6deg
σ = 11deg

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

250

300

350

400
Abdomen Fext(ẋ, σ)
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Simulation analysis for the DLR QA-Joint.
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VSA: HIC experiment: case 1
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Case 1

HIC = 2
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→ Impact velocity is the most important factor determining HIC!!!
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Maximum velocity for n switchings

Simple optimal control problem: maximize q̇(T )

θ̇(t) = u(t), |u(t)| ≤ umax (9)

q̈(t) =
KJ

B
(θ − q) (10)

q(0) = q̇(0) = θ(0) = θ̇(0) = 0 (11)

Solution:

max
u

q̇(T ) = umax

(

2n + 1 − cos(ωT − nπ)
)

, (12)

with n = ⌊ωT
π
⌋ and u = θ̇.
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Theoretical velocity gain: linear unbounded
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Theoretical HIC
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Realistic speed gain

→ speed gain for a real joint (constrained deflection)

q̇max = θ̇max + ∆q̇max

q̇max = θ̇max +

√

2

M
Emax(ϕ, σ∗)

σ∗ is the constant stiffness actuator preset (no variation through
motion).
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Speed gain QA-Joint

Cam Bar

Rocker Arm

Spring

Stiffness Actuator

Connection to
Circular Spline

Mx = 3.1 kg q̇max = 2.9 × 80 deg/s

θ̇max = 80 deg/s HICVSA = 14.1 × HICstiff

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

Collision detection: QA-Joint
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Conclusion VSA I

Decoupled for high contact stiffness

Active compliance (software)

Coupling for low contact stiffness

Decoupled for every contact stiffness
High velocities due to dynamic energy

storage and release

Intrinsic compliance (mechanical)

Decoupled for low contact stiffness

Ensure low velocities by effective

vibration damping and speed limitation

Software

Software
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Conclusion VSA II

Safety approach for VSA

Human present?

Human-friendly mode

yes

• Vibration damping

• Safe velocity observation

• Collision detection & reaction

• Collision avoidance

High-performance mode

no

• Resonance motion for 

high-performance 
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Optimal control for VIA
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Child vs. KR500
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Instep-kick with the DLR-LWRIII

Typical ball speed 27m/s

Needed speed with LWRIII 20.25m/s

Real speed with LWRIII 2.7m/s

Deficit ×8

→ Huge deficits!

How can we optimally utilize joint elasticity for highly dynamic
(explosive) motions?
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Optimal control for VIA

ẋ(t) = f (x(t),u(t)), (13)

with x and u being the state vector and control input, respectively.

Optimality?

Integral cost functional is a reasonable choice, as it weights the
final state with the function h and the timely evolution of the state
and control input with integrating the function g .

J = h(x(tf ), tf ) +

∫ tf

0
g(x(t),u(t), t) dt (14)
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Optimal control for VIA

Together with the Hamiltonian

H(x(t),λ(t),u(t), t) = −g(x(t),u(t), t) + λT f (x(t),u(t), t) (15)

the constrained optimization problem is transformed into a
problem without constraints. However, in order to maximize the
link side velocity at a certain time instant tf only, (14) reduces to:

J = h(x(tf ), tf )) = q̇(tf ) (16)

Since no other constraints are taken into consideration (15)
reduces to

H(x,λ, u, t) = λT f (x(t), u(t), t). (17)
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Optimal control for VIA

Boundary conditions of the adjoint equations result from the
transversal condition

λ(tf ) =
∂h(tf )

∂x
. (18)

This leads to a two point boundary problem (canonical system).

ẋ =
∂H

∂λ
(19)

λ̇ = −
∂H

∂x
(20)
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Optimal control for VIA

case model solution achieved insights

A Velocity source + SEA analytical principal effect of significant joint elasticity
B PT1 + SEA analytical influence of constrained motor dynamics, 1st order
C PT2 + SEA analytical influence of constrained motor dynamics, 2nd order
D PT2 + SEA + JTF numerical influence of joint torque feedback on motor inertia
E PT2 + SEA + JTF + CD numerical influence of deflection constraints
F Velocity source + VS analytical principle effect of stiffness adjustment
G Velocity source + VS + CD numerical influence of stiffness adjustment and constrained deflection
H PT2 + VS + CMT numerical real VIA design behavior and constrained motor torque
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Optimal control for VIA

Vel. source (A) PT1 (B) PT2 (C) PT2+τJ (D)

1
θ=

∫ tf
0 θ̇d dt

Mq̈= KJ(θ − q)

τm= KP(θ̇d − θ̇)

τm= B θ̈

Mq̈= KJ(θ − q)

τm= KD(θ̇d − θ̇) + KP(θd − θ)

τm= B θ̈

Mq̈= KJ(θ − q)

τm= KD(θ̇d − θ̇) + KP(θd − θ)

τm= B θ̈ + KJ(θ − q)

Mq̈= KJ(θ − q)

2
xT= [θ q q̇]

u= θ̇d

xT= [θ θ̇ q q̇]

u= θ̇d

xT= [θd θ θ̇ q q̇]

u= θ̇d

xT = [θd θ θ̇ q q̇]

u= θ̇d

3

ẋ1 = u

ẋ2 = x3

ẋ3 = ω2(x1 − x2)

ẋ1 = x2

ẋ2 = KP
B (u − x2)

ẋ3 = x4

ẋ4 = ω2(x1 − x3)

ẋ1 = u

ẋ2 = x3

ẋ3 = 1
B (KD(u − x3)+

+KP(x1 − x2))

ẋ4 = x5

ẋ5 = ω2(x2 − x4)

ẋ1 = u

ẋ2 = x3

ẋ3 = 1
B (KD(u − x3)+

+KP(x1 − x2) − KJ(x2 − x4))

ẋ4 = x5

ẋ5 = ω2(x2 − x4)
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Optimal control for VIA
Vel. source (A) PT1 (B) PT2 (C) PT2+τJ (D)

4
H(x(t),λ(t), u(t), t) =

λ1u + λ2x3 + λ3ω
2(x1 − x2)

H(x(t),λ(t), u(t), t) = λ1x2+

+λ2
KP
B (u − x2) + λ3x4 + λ4ω

2(x1 − x3)

H(x(t), λ(t), u(t)) = λ1u + λ2x3

+λ3
1
B (KD(u − x3) + KP(x1 − x2))+

+λ4x5 + λ5ω
2(x2 − x4)

H(x(t), λ(t), u(t)) = λ1u + λ2x3

+λ3
1
B (KD(u − x3)+

+KP(x1 − x2) − KJ(x2 − x4))+

+λ4x5 + λ5ω
2(x2 − x4)

5

λ̇1= −λ3ω
2

λ̇2= λ3ω
2

λ̇3= −λ2

λ̇1 = −λ4ω
2

λ̇2 = −λ1 + KP
B λ2

λ̇3 = λ4ω
2

λ̇4 = −λ3

λ̇1 = −λ3
KP
B

λ̇2 = λ3
KP
B − λ5ω

2

λ̇3 = −λ2 + λ3
KD
B

λ̇4 = λ5ω
2

λ̇5 = −λ4

λ̇1 = −λ3
KP
B

λ̇2 = λ3

(

KP
B + KJ

B

)

− λ5ω
2

λ̇3 = −λ2 + λ3
KD
B

λ̇4 = −λ3
KJ
B + λ5ω

2

λ̇5 = −λ4

6
λT (tf )= [0 0 1]

xT (0)= [0 0 0]

λT (tf )= [0 0 0 1]

xT (0)= [0 0 0 0]

λT (tf )= [0 0 0 0 1]

xT (0)= [0 0 0 0 0]

λT (tf )= [0 0 0 0 1]

xT (0)= [0 0 0 0 0]

7 θ̇∗d =







θ̇max, λ1 > 0

θ̇min, λ1 < 0
singular, λ1 = 0

θ̇∗d =







θ̇max, λ2 > 0

θ̇min, λ2 < 0
singular, λ2 = 0

θ̇∗d =







θ̇max, λ1 + KD
B λ3 > 0

θ̇min, λ1 + KD
B λ3 < 0

singular, λ1 + KD
B λ3 = 0

θ̇∗d =







θ̇max, λ1 + KD
B λ3 > 0

θ̇min, λ1 + KD
B λ3 < 0

singular, λ1 + KD
B λ3 = 0

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

Optimal control for VIA
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Optimal control: linear case
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Relative maximum link vs. motor velocity

40 60 80 100 120 140
1.6

1.8

2

2.2

2.4

2.6

q̇

θ̇d

θ̇d [o/s]

ϕ0 = 3o

5o

7o 9o11o

13o

Optimal control problem solved for the 1DoF QA-Joint.
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Throwing a ball with the DLR VS-joint

ThrowingHaddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

2 DOF throwing

2DOF throwingHaddadin @ Stiff/Viactors Summerschool, 26.07.2011
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Elasticity for cyclic manipulation
tasks
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motivation

Humans are able to use their elasticities for performing dynamic
cyclic manipulation motions, which are hybrid by nature.

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

goals

dribbling by proprioceptive feedback only!, no vision
feedback

utilizing intrinsically compliant fingers for
1 protecting the robot
2 enlarging the contact time
3 utilizing dynamic elastic energy storage and release

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

content
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1. Modeling

G
u(t) y(t)
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1 DoF model
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1 DoF model

with zB = [zB żB ]T = [z1B z2B ]T
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2. Feedforward control and
stability

G

GS

w(t) u(t) y(t)

uV (t)
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hand trajectory

using a sine as reference trajectory

classical problem of robot juggling → negative accelerations

natural choice for stimulating a spring system

z(t) =

{

A sin
(

5π
4T t

)

+ z0 for t ∈
[

0; 4
5T

]

−1
4A sin

(

5π
T t

)

+ z0 for t ∈
]

4
5T ;T

[
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Hand trajectory

desired ball energy Ed as
parameterization for the hand
trajectory

period time T from t1 and
t2

amplitude A and height z0

are linearly dependent

A(Ed ) = a1 + a2Ed

z0(Ed ) = a3 + a4Ed

with ai as parameter from the
simulation

no proof yet, but it is valid
EH ∼ Ed
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analytic solution 1 DoF
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stability

Ansatz:
Investigate the given initial error

z
p
BI = zBI + eI
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stability

Ansatz:
Investigate the given initial error

z
p
BI = zBI + eI

over one cycle by the error mapping

eIn+1
=IV MIeIn

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

stability

Ansatz:
Investigate the given initial error

z
p
BI = zBI + eI

over one cycle by the error mapping

eIn+1
=IV MIeIn

with
IV MI =IV MIII

IIIMII+
II+

MII−
II−MI .
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stability

Ansatz:
Investigate the given initial error

z
p
BI = zBI + eI

over one cycle by the error mapping

eIn+1
=IV MIeIn

with
IV MI =IV MIII

IIIMII+
II+

MII−
II−MI .

The criterion for stability is

max(||λ(IV MI )||) < 1.

Interpretation: Poincaré map with error eigenvalue as crossing
metric
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Stability
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5. Simulations and experiments

K G

GS

ΣBeob

w(t) e(t) uR(t) u(t) y(t)

−

uV (t)
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simulation 1 DoF
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stiffness investigation - position
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stiffness investigation - ball energy
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stiffness investigation - energy flow

EB ES

ĖBS
ẆS

Energy and work considerations
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stiffness investigation - work
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stiffness investigation - power
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stiffness investigation - stability regions
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stiffness investigation - energy

Until now: z0 remained the same.

Now: dribbling at a given height (energy level) with different
stiffnesses.

→ A significantly faster hand trajectory is needed for the high
stiffness case
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stiffness investigation - energy
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stiffness investigation - work
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simulation 3 DoF
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simulation 6 DoF

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011



Safety for VIA Optimal control for VIA Elasticity for cyclic manipulation tasks

experiment
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experiment
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Thank you for your attention!
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Haddadin, S., Albu-Schäffer, A., and Hirzinger, G. (2009c).
Requirements for Safe Robots: Measurements, Analysis, & New Insights.
International Journal of Robotics Research, Invited Paper.
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