Intrinsically Elastic Robots: Safety, Optimal Control, & Cyclic Motion

Sami Haddadin

Institute of Robotics and Mechatronics German Aerospace Center (DLR), Germany

26.07.2011

ヨト

• • • • • • • • • • • •

Introduction

Common reasons for intrinsic elasticity:

- Better safety
- Better energy efficiency
- Better robustness

None of these arguments can be answered uniquely with *yes* or *no* (except maybe robustness, but this still has to prove in the full context of applications, reliability,...). It depends on the task.

PROBLEMS WE INVESTIGATE

At DLR we investigate following problems:

- Safety for VIA: injury analysis & collision detection and reaction
- Optimal control for VIA: performance increase through elastic energy storage and release
- Motion and interaction control: vibration damping, impedance control
- Elasticity for cyclic manipulation motions
- Learning impedances based on human motor control insights (together with Imperial College)

PROBLEMS WE INVESTIGATE

At DLR we investigate following problems:

- Safety for VIA: injury analysis & collision detection and reaction
- Optimal control for VIA: performance increase through elastic energy storage and release
- Motion and interaction control: vibration damping, impedance control
- Elasticity for cyclic manipulation motions
- Learning impedances based on human motor control insights (together with Imperial College)

Safety for VIA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Collision experiments

MOMENTUM BASED DETECTION

RIGID BODY DYNAMICS

$$M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) = \boldsymbol{\tau}_{J} + \boldsymbol{\tau}_{\text{ext}}$$
(1)

$$\mathbf{p} = M(\mathbf{q})\dot{\mathbf{q}},\tag{2}$$

(日)

э

Reformulated dynamics

$$\dot{\mathbf{p}} = \boldsymbol{\tau}_J - \boldsymbol{\beta}(\mathbf{q}, \dot{\mathbf{q}}) - \boldsymbol{\tau}_{\text{ext}}$$
(3)

where

$$\beta(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{n}(\mathbf{q}, \dot{\mathbf{q}}) - \dot{M}(\mathbf{q})\dot{\mathbf{q}} = C(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{g}(\mathbf{q}) - \dot{M}(\mathbf{q})\dot{\mathbf{q}} \qquad (4)$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

MOMENTUM BASED DETECTION

It can be shown that the observed disturbance $\hat{\mathbf{r}}$ is a component-wise filtered version of the real external torque $\boldsymbol{\tau}_{\mathrm{ext}}$:

$$\hat{r}^{i} = \frac{1}{sT_{O}^{i} + 1} \tau_{\text{ext}}^{i} = \frac{K_{O}^{i}}{s + K_{O}^{i}} \tau_{\text{ext}}^{i} \approx \tau_{\text{ext}}^{i} \quad \forall i \in \{1, ..., n\}$$
(5)
$$\hat{\mathbf{r}} = (\hat{r}^{1} \cdots \hat{r}^{n}).$$
(6)

The dynamics of $\hat{\mathbf{r}}$ is

$$\hat{\dot{\mathbf{r}}} = -K_O \hat{\mathbf{r}} + K_O \boldsymbol{\tau}_{\text{ext}}.$$
(7)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Collision detection: soft-tissue injury

VIA IMPACT CASES

There are **two** important impact cases.

- **(**) collisions **without** preceding elastic energy storage and release
- **②** collisions **with** preceding elastic energy storage and release

Up to now:

- motor and link collide at the same velocity (e.g. original work by Bicchi, Khatib)
- \rightarrow decoupling improves the impact characteristics (however only for certain conditions, see next sllide)
- speed gain was not considered at all (case 2)

However, it is well known that velocity influences HIC (Head Injury Criterion) more than quadratically, whereas inertia shows a saturation effect.

A 10

Collision LWR-human head

\rightarrow Joint stiffness reduction does not help for the full manipulator LWR-III. It is already decoupled!

(日)

Collision LWR-human head

 $M_x = 4.0$ kg, $K_H = 10^3$ kN/m \rightarrow Decoupling already present for realistic link inertia and moderate (non-desired) joint stiffness!

\rightarrow These are conditions of a full scale robot!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

VSA: CASE 1

Simulation analysis for the DLR QA-Joint.

→ 同 ト → ヨト

∃ >

VSA: HIC EXPERIMENT: CASE 1

Low values due to suppression of elastic shifts by vibration damping.

Case 1

 \rightarrow Impact velocity is the most important factor determining HIC!!!

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

MAXIMUM VELOCITY FOR n SWITCHINGS

Simple optimal control problem: maximize $\dot{q}(T)$

$$\dot{\theta}(t) = u(t), \quad |u(t)| \le u_{\max}$$
 (9)

$$\ddot{q}(t) = \frac{K_J}{B}(\theta - q) \tag{10}$$

$$q(0) = \dot{q}(0) = \theta(0) = \dot{\theta}(0) = 0$$
 (11)

Solution:

$$\max_{u} \dot{q}(T) = u_{\max} (2n + 1 - \cos(\omega T - n\pi)), \qquad (12)$$

with $n = \lfloor \frac{\omega T}{\pi} \rfloor$ and $u = \dot{\theta}$.

ł

THEORETICAL VELOCITY GAIN: LINEAR UNBOUNDED

THEORETICAL HIC

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

REALISTIC SPEED GAIN

 \rightarrow speed gain for a real joint (constrained deflection)

$$\dot{q}_{\max} = \dot{\theta}_{\max} + \Delta \dot{q}_{\max}$$

$$\dot{q}_{\max} = \dot{\theta}_{\max} + \sqrt{\frac{2}{M}E_{\max}(\varphi, \sigma^*)}$$

 σ^* is the constant stiffness actuator preset (no variation through motion).

・ロト ・ 一下・ ・ ヨト

э

Speed gain QA-Joint

$$\dot{\theta}_{\max} = 3.1 \text{ kg} \longrightarrow \dot{q}_{\max} = 2.9 \times 80 \text{ deg/s}$$

 $\dot{\theta}_{\max} = 80 \text{ deg/s} \longrightarrow HIC_{VSA} = 14.1 \times HIC_{stiff}$

Collision detection: QA-Joint

CONCLUSION VSA I

CONCLUSION VSA II

LITERATURE: SAFETY FOR VIA

- [Zinn et al., 2004]
- [Bicchi and Tonietti, 2004]
- [Haddadin et al., 2007a]
- [Van Damme et al., 2009]
- [Haddadin et al., 2007b]
- [De Luca et al., 2006]
- [Haddadin et al., 2008a]
- [Haddadin et al., 2010b]
- [Albu-Schäffer et al., 2008]
- [Haddadin et al., 2009a]
- [Haddadin et al., 2009b]

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト ・

LITERATURE: SAFETY FOR VIA

- [Shin et al., 2008]
- [Bicchi et al., 2008]
- [Haddadin et al., 2008b]
- [Haddadin et al., 2009c]
- [Haddadin et al., 2010a]
- [Eiberger et al., 2010]
- [D.Gao and Wampler, 2009]
- [Ikuta et al., 2003]
- [Lim and Tanie, 2000]
- [Park et al., 2009]
- [Haddadin, 2011]

Optimal control for VIA

Safety for VIA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

CHILD VS. KR500

・ロト ・ 一下・ ・ ヨト ・ 日 ・

INSTEP-KICK WITH THE DLR-LWRIII

Typical ball speed	27m/s
Needed speed with LWRIII	20.25m/s
Real speed with LWRIII	2.7m/s
Deficit	×8

\rightarrow Huge deficits!

How can we optimally utilize joint elasticity for highly dynamic (explosive) motions?

Optimal control for VIA

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t)), \tag{13}$$

with \mathbf{x} and \mathbf{u} being the state vector and control input, respectively.

Optimality?

Integral cost functional is a reasonable choice, as it weights the final state with the function h and the timely evolution of the state and control input with integrating the function g.

$$J = h(\mathbf{x}(t_f), t_f) + \int_0^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) \, \mathrm{d}t \tag{14}$$

Optimal control for VIA

Together with the Hamiltonian

$$H(\mathbf{x}(t), \boldsymbol{\lambda}(t), \mathbf{u}(t), t) = -g(\mathbf{x}(t), \mathbf{u}(t), t) + \boldsymbol{\lambda}^{T} f(\mathbf{x}(t), \mathbf{u}(t), t)$$
(15)

the constrained optimization problem is transformed into a problem without constraints. However, in order to maximize the link side velocity at a certain time instant t_f only, (14) reduces to:

$$J = h(\mathbf{x}(t_f), t_f)) = \dot{q}(t_f)$$
(16)

Since no other constraints are taken into consideration (15) reduces to

$$H(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{u}, t) = \boldsymbol{\lambda}^{T} f(\mathbf{x}(t), \boldsymbol{u}(t), t).$$
(17)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Optimal control for VIA

Boundary conditions of the adjoint equations result from the transversal condition

$$\boldsymbol{\lambda}(t_f) = \frac{\partial h(t_f)}{\partial \mathbf{x}}.$$
 (18)

This leads to a two point boundary problem (canonical system).

$$\dot{\mathbf{x}} = \frac{\partial H}{\partial \boldsymbol{\lambda}} \tag{19}$$

$$\dot{\boldsymbol{\lambda}} = -\frac{\partial H}{\partial \mathbf{x}} \tag{20}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Optimal control for VIA

case	model	solution	achieved insights
A	Velocity source + SEA	analytical	principal effect of significant joint elasticity
В	PT1 + SEA	analytical	influence of constrained motor dynamics, 1st order
С	PT2 + SEA	analytical	influence of constrained motor dynamics, 2nd order
D	PT2 + SEA + JTF	numerical	influence of joint torque feedback on motor inertia
Е	PT2 + SEA + JTF + CD	numerical	influence of deflection constraints
F	Velocity source $+$ VS	analytical	principle effect of stiffness adjustment
G	Velocity source $+$ VS $+$ CD	numerical	influence of stiffness adjustment and constrained deflection
Н	PT2 + VS + CMT	numerical	real VIA design behavior and constrained motor torque

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Optimal control for VIA

	Vel. source (A)	PT1 (B)	PT2 (C)	$PT2+ au_J$ (D)
1	$egin{aligned} & heta = \int_0^{t_f} \dot{ heta}_d \mathrm{d}t \ & M\ddot{q} = K_J(heta - q) \end{aligned}$	$\tau_m = K_P(\dot{\theta}_d - \dot{\theta})$ $\tau_m = B\ddot{\theta}$ $M\ddot{q} = K_J(\theta - q)$	$\begin{aligned} \tau_m &= K_D(\dot{\theta}_d - \dot{\theta}) + K_P(\theta_d - \theta) \\ \tau_m &= B\ddot{\theta} \\ M\ddot{q} &= K_J(\theta - q) \end{aligned}$	$\tau_m = K_D(\dot{\theta}_d - \dot{\theta}) + K_P(\theta_d - \theta)$ $\tau_m = B\ddot{\theta} + K_J(\theta - q)$ $M\ddot{q} = K_J(\theta - q)$
2	$\mathbf{x}^{T} = \begin{bmatrix} \theta & q & \dot{q} \end{bmatrix}$ $u = \dot{\theta}_d$	$\mathbf{x}^{T} = [\theta \ \dot{\theta} \ q \ \dot{q}]$ $u = \dot{\theta}_{d}$	$\mathbf{x}^{T} = \begin{bmatrix} \theta_{d} \ \theta \ \dot{\theta} \ q \ \dot{q} \end{bmatrix}$ $u = \dot{\theta}_{d}$	$\mathbf{x}^{T} = [\theta_{d} \ \theta \ \dot{\theta} \ q \ \dot{q}]$ $u = \dot{\theta}_{d}$
3	$\dot{x}_1 = u$ $\dot{x}_2 = x_3$ $\dot{x}_3 = \omega^2(x_1 - x_2)$	$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= \frac{K_F}{B}(u-x_2) \\ \dot{x}_3 &= x_4 \\ \dot{x}_4 &= \omega^2(x_1-x_3) \end{split}$	$\begin{aligned} \dot{x}_1 &= u \\ \dot{x}_2 &= x_3 \\ \dot{x}_3 &= \frac{1}{B} (K_D (u - x_3) + \\ &+ K_P (x_1 - x_2)) \\ \dot{x}_4 &= x_5 \\ \dot{x}_5 &= \omega^2 (x_2 - x_4) \end{aligned}$	$\begin{split} \dot{x}_1 &= u \\ \dot{x}_2 &= x_3 \\ \dot{x}_3 &= \frac{1}{B} (K_D (u - x_3) + \\ &+ K_P (x_1 - x_2) - K_J (x_2 - x_4)) \\ \dot{x}_4 &= x_5 \\ \dot{x}_5 &= \omega^2 (x_2 - x_4) \end{split}$

Optimal control for VIA

	Vel. source (A)	PT1 (B)	PT2 (C)	$PT2+ au_J$ (D)
4	$H(\mathbf{x}(t), \boldsymbol{\lambda}(t), \boldsymbol{u}(t), t) =$ $\lambda_1 u + \lambda_2 x_3 + \lambda_3 \omega^2 (x_1 - x_2)$	$\begin{aligned} H(\mathbf{x}(t), \boldsymbol{\lambda}(t), \boldsymbol{u}(t), t) &= \lambda_1 x_2 + \\ &+ \lambda_2 \frac{K_P}{B} (\boldsymbol{u} - x_2) + \lambda_3 x_4 + \lambda_4 \omega^2 (x_1 - x_3) \end{aligned}$	$ \begin{aligned} H(\mathbf{x}(t),\lambda(t),u(t)) &= \lambda_1 u + \lambda_2 x_3 \\ + \lambda_3 \frac{1}{3} (K_D(u-x_3) + K_P(x_1-x_2)) + \\ &+ \lambda_4 x_5 + \lambda_5 \omega^2 (x_2-x_4) \end{aligned} $	$ \begin{split} H(\mathbf{x}(t), \lambda(t), u(t)) &= \lambda_1 u + \lambda_2 x_3 \\ &+ \lambda_3 \frac{1}{B} (K_D(u-x_3) + \\ &+ K_P(x_1 - x_2) - K_J(x_2 - x_4)) + \\ &+ \lambda_4 x_5 + \lambda_5 \omega^2 (x_2 - x_4) \end{split} $
5	$ \begin{split} \dot{\lambda}_1 &= -\lambda_3 \omega^2 \\ \dot{\lambda}_2 &= \lambda_3 \omega^2 \\ \dot{\lambda}_3 &= -\lambda_2 \end{split} $	$\begin{split} \dot{\lambda}_1 &= -\lambda_4 \omega^2 \\ \dot{\lambda}_2 &= -\lambda_1 + \frac{\kappa_{\mu}}{B} \lambda_2 \\ \dot{\lambda}_3 &= \lambda_4 \omega^2 \\ \dot{\lambda}_4 &= -\lambda_3 \end{split}$	$\begin{split} \dot{\lambda}_1 &= -\lambda_3 \frac{\kappa_B}{B} \\ \dot{\lambda}_2 &= \lambda_3 \frac{\kappa_B}{B} - \lambda_5 \omega^2 \\ \dot{\lambda}_3 &= -\lambda_2 + \lambda_3 \frac{\kappa_B}{B} \\ \dot{\lambda}_4 &= \lambda_5 \omega^2 \\ \dot{\lambda}_5 &= -\lambda_4 \end{split}$	$\begin{split} \dot{\lambda}_1 &= -\lambda_3 \frac{\kappa_B}{B} \\ \dot{\lambda}_2 &= \lambda_3 \left(\frac{\kappa_B}{B} + \frac{\kappa_1}{B} \right) - \lambda_5 \omega^2 \\ \dot{\lambda}_3 &= -\lambda_2 + \lambda_3 \frac{\kappa_B}{B} \\ \dot{\lambda}_4 &= -\lambda_3 \frac{\kappa_1}{B} + \lambda_5 \omega^2 \\ \dot{\lambda}_5 &= -\lambda_4 \end{split}$
6	$\lambda^{T}(t_{f}) = [0 \ 0 \ 1]$ $\mathbf{x}^{T}(0) = [0 \ 0 \ 0]$	$\lambda^{T}(t_{f}) = [0 \ 0 \ 0 \ 1]$ $\mathbf{x}^{T}(0) = [0 \ 0 \ 0 \ 0]$	$\lambda^{T}(t_{f}) = [0 \ 0 \ 0 \ 0 \ 1]$ $\mathbf{x}^{T}(0) = [0 \ 0 \ 0 \ 0 \ 0]$	$\lambda^{T}(t_{f}) = [0 \ 0 \ 0 \ 0 \ 1]$ $\mathbf{x}^{T}(0) = [0 \ 0 \ 0 \ 0 \ 0]$
7	$\dot{\theta}_{d}^{*} = \begin{cases} \dot{\theta}_{\max}, & \lambda_{1} > 0 \\ \dot{\theta}_{\min}, & \lambda_{1} < 0 \\ \text{singular}, & \lambda_{1} = 0 \end{cases}$	$\dot{\theta}_{d}^{*} = \begin{cases} \dot{\theta}_{\max}, & \lambda_{2} > 0\\ \dot{\theta}_{\min}, & \lambda_{2} < 0\\ \text{singular}, & \lambda_{2} = 0 \end{cases}$	$\dot{\boldsymbol{\theta}}_{d}^{*} = \left\{ \begin{array}{ll} \dot{\boldsymbol{\theta}}_{\max}, & \lambda_{1} + \frac{K_{D}}{R}\lambda_{3} > 0\\ \dot{\boldsymbol{\theta}}_{\min}, & \lambda_{1} + \frac{K_{D}}{R}\lambda_{3} < 0\\ \text{singular}, & \lambda_{1} + \frac{K_{D}}{R}\lambda_{3} = 0 \end{array} \right.$	$\dot{\boldsymbol{\theta}}_{d}^{*} = \left\{ \begin{array}{ll} \dot{\boldsymbol{\theta}}_{\max}, & \lambda_{1} + \frac{K_{D}}{R}\lambda_{3} > 0\\ \dot{\boldsymbol{\theta}}_{\min}, & \lambda_{1} + \frac{K_{D}}{R}\lambda_{3} < 0\\ \text{singular}, & \lambda_{1} + \frac{K_{D}}{R}\lambda_{3} = 0 \end{array} \right.$

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

æ

Optimal control for VIA

Optimal control: linear case

Relative maximum link vs. motor velocity

Optimal control problem solved for the 1DoF QA-Joint. = =

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Throwing a ball with the DLR VS-joint

Haddadin To bino Summerschool, 26.07.2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

2 DOF THROWING

Haddadin 200 Fiathrowing chool, 26.07.2011

イロト 不得 トイヨト イヨト 二日

LITERATURE: OPTIMAL CONTROL FOR VIA

- [Haddadin et al., 2011c]
- [Garabini et al., 2011]
- [Bryson and Ho, 1975]
- [Papageorgiou, 1996]
- [Kirk, 1970]
- [Pontrjagin, 1967]
- [Hermann, 2004]
- [Haddadin, 2011]

Elasticity for cyclic manipulation tasks

ヘロト ヘ部ト ヘヨト ヘヨト

MOTIVATION

Humans are able to use their elasticities for performing dynamic cyclic manipulation motions, which are hybrid by nature.

GOALS

- dribbling by proprioceptive feedback only!, no vision feedback
- utilizing intrinsically compliant fingers for
 - protecting the robot
 - enlarging the contact time
 - utilizing dynamic elastic energy storage and release

3. 3

CONTENT

- 1. Modeling
- 2. Feedforward control and stability
- 3. Observer
- 4. Feedback control
- 5. Simulations and experiments, and the second seco

1. Modeling

ヘロト ヘ節ト ヘヨト ヘヨト

э

・ロト ・聞ト ・ヨト ・ヨト

æ

1 DOF MODEL

イロト 不得 トイヨト イヨト 二日

1 DOF MODEL

2. Feedforward control and stability

▲日▼▲□▼▲□▼▲□▼ □ ののの

HAND TRAJECTORY

using a sine as reference trajectory

- $\bullet\,$ classical problem of robot juggling $\rightarrow\,$ negative accelerations
- natural choice for stimulating a spring system

$$z(t) = \begin{cases} A\sin\left(\frac{5\pi}{4T}t\right) + z_0 & \text{for } t \in \left[0; \frac{4}{5}T\right] \\ -\frac{1}{4}A\sin\left(\frac{5\pi}{T}t\right) + z_0 & \text{for } t \in \left]\frac{4}{5}T; T\right[\end{cases}$$

HAND TRAJECTORY

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

desired ball energy E_d as parameterization for the hand trajectory

- period time *T* from t_1 and t_2
- amplitude *A* and height *z*₀ are linearly dependent

$$A(E_d) = a_1 + a_2 E_d$$

$$z_0(E_d) = a_3 + a_4 E_d$$

with a_i as parameter from the simulation

• no proof yet, but it is valid $E_H \sim E_d$

(日)

э

ANALYTIC SOLUTION 1 DOF

STABILITY

Ansatz: Investigate the given initial error

$$\mathbf{z}_{BI}^{p} = \mathbf{z}_{BI} + \mathbf{e}_{I}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

STABILITY

Ansatz: Investigate the given initial error

$$\mathbf{z}_{BI}^{p} = \mathbf{z}_{BI} + \mathbf{e}_{I}$$

over one cycle by the error mapping

$$\mathbf{e}_{I_{n+1}} =^{IV} M_I \mathbf{e}_{I_n}$$

STABILITY

Ansatz: Investigate the given initial error

$$\mathbf{z}_{BI}^{p} = \mathbf{z}_{BI} + \mathbf{e}_{I}$$

over one cycle by the error mapping

$$\mathbf{e}_{I_{n+1}} =^{IV} M_I \mathbf{e}_{I_n}$$

with

$${}^{IV}M_{I} = {}^{IV}M_{III} {}^{III}M_{II^{+}} {}^{II^{+}}M_{II^{-}} {}^{II^{-}}M_{I}.$$

STABILITY

Ansatz: Investigate the given initial error

$$\mathbf{z}_{BI}^{p} = \mathbf{z}_{BI} + \mathbf{e}_{I}$$

over one cycle by the error mapping

$$\mathbf{e}_{I_{n+1}} =^{IV} M_I \mathbf{e}_{I_n}$$

with

$${}^{IV}M_{I} = {}^{IV}M_{III} {}^{III}M_{II^{+}} {}^{II^{+}}M_{II^{-}} {}^{II^{-}}M_{I}.$$

The criterion for stability is

$$\max(||\lambda({}^{IV}M_I)||) < 1.$$

Interpretation: Poincaré map with error eigenvalue as crossing metric Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

STABILITY

- - E - E

5. Simulations and experiments

SIMULATION 1 DOF

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

STIFFNESS INVESTIGATION - POSITION

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

STIFFNESS INVESTIGATION - BALL ENERGY

(日) (部) (E) (E) (E)

STIFFNESS INVESTIGATION - ENERGY FLOW

Energy and work considerations

STIFFNESS INVESTIGATION - WORK

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

STIFFNESS INVESTIGATION - POWER

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

STIFFNESS INVESTIGATION - STABILITY REGIONS

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

▲日▼▲□▼▲□▼▲□▼ □ ののの

STIFFNESS INVESTIGATION - ENERGY

- Until now: z₀ remained the same.
- **Now**: dribbling at a given height (energy level) with different stiffnesses.
- $\bullet \ \to A$ significantly faster hand trajectory is needed for the high stiffness case

STIFFNESS INVESTIGATION - ENERGY

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

STIFFNESS INVESTIGATION - WORK

Haddadin @ Stiff/Viactors Summerschool, 26.07.2011

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

SIMULATION 3 DOF

・ロト ・四ト ・モト・モー

э

SIMULATION 6 DOF

▲ロト ▲圖ト ▲屋ト ▲屋ト

æ

EXPERIMENT

<ロト < 回 > < 回 > < 回 > < 回 > <

э

EXPERIMENT

ヘロト ヘヨト ヘヨト

LITERATURE: CYCLIC ELASTIC MOTION FOR VIA

- [Haddadin et al., 2011a]
- [Haddadin et al., 2011b]
- [Spong, 1987]
- [Albu-Schäffer et al., 2007]
- [Bühler et al., 1988]
- [Bätz et al., 2009]
- [Drakunov, 1992]
- [Mettin et al., 2010]
- [Okada et al., 2002]
- [Reist and D'Andrea, 2009]
- [Khalil, 2002]

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Albu-Schäffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimböck, T., Wolf, S., and Hirzinger, G. (2008). Soft robotics: From Torque Feedback Controlled Lightweight Robots to Intrinsically Compliant Systems. <i>IEEE Robotics and Automation Magazine</i> , 15(3):20 – 30.
Albu-Schäffer, A., Ott, C., and Hirzinger, G. (2007). A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. <i>The Int. J. of Robotics Research</i> , 26:23–39.
Bätz, G., Sobotka, M., Wolherr, D., and Buss, M. (2009). Robot basketball: Ball dribbling - a modified juggling task. In <i>2008 IEEE International Conference on Robotics and Automation</i> , pages 2410 - 2415, San Diego, USA.
Bicchi, A., Bavaro, M., Boccadamo, G., De Carli, D., Filippini, R., Grioli, G., Piccigallo, M., Rosi, A., Schiavi, R., Sen, S., and Tonietti, G. (2008). Physical human-robot interaction: Dependability, safety, and performance. In <i>Int. Workshop Advanced Motion Control</i> , pages 9–14.
Bicchi, A. and Tonietti, G. (2004). Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control. <i>IEEE Robotics and Automation Mag.</i> , 11:22–33.

Bryson, A. and Ho, Y. (1975). <i>Applied optimal control.</i> Hemisphere Publ. Corp., rev. print. edition.
Bühler, M., Koditschek, D. E., and Kindlmann, P. (1988). A one degree of freedom juggler in a two degree of freedom environment. In <i>Proceedings of the International Workshop on Intelligent Robots</i> , pages 91 – 97, Tokyo, Japan.
De Luca, A., Albu-Schäffer, A., Haddadin, S., and Hirzinger, G. (2006). Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm. <i>IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2006), Beijing,</i> <i>China</i> , pages 1623–1630.
D.Gao and Wampler, C. (2009). On the use of the head injury criterion (HIC) to assess the danger of robot impacts. <i>IEEE Robotics and Automation Mag.</i> , 16.
Drakunov, S. V. (1992). Sliding-mode observer based on equivalent control method. In <i>Proceedings of the 31st Contefence on Decision and Control</i> , pages 2368 – 2369, Tuscon, USA.
Eiberger, O., Haddadin, S., Albu-Schäffer, A., and Hirzinger, G. (2010).

The "DLR QA-Joint": A New Joint Design with Intrinsic Variable Compliance. In submitted to: IEEE Int. Conf. on Robotics and Automation (ICRA2010), Anchorage, Alaska.

Garabini, M., Andrea Passaglia, A., Belo, F., Salaris, P., and Bicchi, A. (2011). Optimality principles in stiffness control: The vsa hammer example. In *IEE/RSJ International Conference on Intelligent Robots and Systems*, San Francisco, USA.

Haddadin, S. (2011).

Towards Safe Robots: Approaching Asimov's 1st Law. Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany. PhD Thesis.

Haddadin, S., Albu-Schäffer, A., De Luca, A., and Hirzinger, G. (2008a). Collision Detection & Reaction: A Contribution to Safe Physical Human-Robot Interaction.

In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2008), Nice, France, Best Application Paper Award.

Haddadin, S., Albu-Schäffer, A., Eiberger, O., and Hirzinger, G. (2010a). Does Compliant Actuation conflict with Human-Friendly Robotics? On the Role of Joint Stiffness in physical Human-Robot Interaction.

In submitted to: IEEE Int. Conf. on Robotics and Automation (ICRA2010), Anchorage, Alaska.

<□ > < @ > < E > < E > E のQ @

Haddadin, S., Krieger, K., and Albu-Schäffer, A. (2011a). Exploiting elastic energy storage for cyclic manipulation: An analysis for basketball dribbling with an anthropomorphic robot. In <i>IEE/RSJ International Conference on Intelligent Robots and Systems</i> , San Francisco, USA.
Haddadin, S., Krieger, K., and Albu-Schäffer, A. (2011b). Exploiting elastic energy storage for cyclic manipulation: Modeling, stability, and observations for dribbling. In <i>IEEE Conference on Decision and Control</i> , Orlando, USA.
Haddadin, S., Laue, T., Frese, U., and Hirzinger, G. (2007b). Foul 2050: Thoughts on Physical Interaction in Human-Robot Soccer. In <i>IEEE/RSJ International Conference on Intelligent Robots and Systems</i> (<i>IROS2007</i>), San Diego, USA.
Haddadin, S., Laue, T., Frese, U., Wolf, S., Albu-Schäffer, A., and Hirzinger, G. (2008b). Kick it like a Safe Robot: Requirements for 2050. <i>Robotics and Autonomous Systems: Special Issue on Humanoid Soccer Robots</i> , 57:761 – 775.
Haddadin, S., Weis, M., Wolf, S., and Albu-Schäffer, A. (2011c). Optimal control for maximizing link velocity of robotic variable stiffness joints. In <i>IFAC World Congress</i> .

Hermann, M. (2004). Numerik gewöhnlicher Differentialgleichungen: Anfangs- und Randwertprobleme. Oldenbourg, Müchen, (German). Ikuta, K., Ishii, H., and Nokata, M. (2003). Safety evaluation method of design and control for human-care robots. The Int. J. of Robotics Research, 22(5):281–298. Khalil, K. H. (2002). Nonlinear Systems. Prentice Hall. New Jersev. USA. Kirk, D. (1970). Optimal control theory. Prentice-Hall. Lim, H.-O. and Tanie, K. (2000). Human safety mechanisms of human-friendly robots: Passive viscoelastic trunk and passively movable Base. The Int. J. of Robotics Research, 19(4):307-335. Mettin, U., Shiriaev, A. S., Bätz, G., and Wolherr, D. (2010). Ball dribbling with an underactuated continuous-time control phase.

In 2010 IEEE International Conference on Robotics and Automation, pages 4669 – 4674, Anchorage, USA.

Okada, M., Ban, S., and Nakamura, Y. (2002). Skill of compliance with controlled charging/discharging of kinetic energy. In <i>IEEE Int. Conf. on Robotics and Automation (ICRA2002), Washington, USA</i> , pages 2455–2460.
Papageorgiou, M. (1996). Optimierung : statische, dynamische, stochastische Verfahren für die Anwendung. Oldenbourg, 2. erw. u. verb. aufl. edition. (German).
Park, JJ., Kim, HS., and Song, JB. (2009). Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety. <i>IEEE Int. Conf. on Robotics and Automation (ICRA2009), Kobe, Japan,</i> pages 3371–3376.
Pontrjagin, L. (1967). <i>Mathematische Theorie optimaler Prozesse</i> . Oldenbourg, München, 2., verb. aufl. edition. (German).
Reist, P. and D'Andrea, R. (2009). Bouncing an unconstrained ball in three dimensions with a blind juggling robot. In 2009 IEEE International Conference on Robotics and Automation, pages 1774 - 1781, Kobe, Japan.

<□ > < @ > < E > < E > E のQ @

Shin, D., Sardellitti, I., and Khatib, O. (2008). Hybrid actuation approach for human-friendly robot design. In <i>IEEE Int. Conf. on Robotics and Automation (ICRA2008), Pasadena, USA</i> , pages 1741–1746.
Spong, M. (1987). Modeling and control of elastic joint robots. <i>IEEE Journal of Robotics and Automation</i> , pages 291–300.
Van Damme, M., Vanderborght, B., Verrelst, B., Van Ham, R., Daerden, F., and Lefeber, D. (2009). Proxy-based sliding mode control of a planar pneumatic manipulator. <i>Int. J. Rob. Res.</i> , 28(2):266–284.
Zinn, M., Khatib, O., and Roth, B. (2004). A new actuation approach for human friendly robot design. <i>The Int. J. of Robotics Research</i> , 23:379–398.