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Coping with Contact

 The robots are coming!
 Soon they’ll be everywhere, rubbing shoulders with people
 How do you design their controllers to cope with contact?

 A “signals” perspective permeates controller design
 Pro: Operational modularity enables complex system design
 Con: Limited to one-way interaction

 The core challenge of contact robotics:
 Physical reality: interactions are two-way

 Contacted object dynamics couple to machine dynamics
 Composite behavior is not a simple composition of operators

 An alternative approach:
 Is it useful to describe control systems as physical systems?

Information and Energy
 How can that help? Isn’t a control system always a physical system?

 Physical dynamics process energy, computers process information
 Computers and brains consume available energy, generate entropy, and get hot. That 

may limit their performance and speed, but…
 Energy is largely irrelevant to what computers do

 Physical constraints on computation & signal processing
 Temporal causality (no output before input)
 Bounded variables (no infinite quantities)

…and that seems to be all

 Physical systems are (much) more constrained…
 By the laws of mechanical physics—especially thermodynamics

 A mechanical engineer’s working definition 

…and that may be used to advantage

Interaction Control

• Manipulation requires interaction
– object behavior affects control of force and motion

• Independent control of force and motion is not possible
– object behavior relates force and motion

• contact a rigid surface: kinematic constraint

• move an object: dynamic constraint

• Accurate control of force or motion requires detailed models of
• manipulator dynamics 

• object dynamics 

– object dynamics are usually known poorly, often not at all

– … one important example: a collaborating human

Object Behavior

• Can object forces be treated as external (exogenous) disturbances?
– the usual assumptions don’t apply:

• “disturbance” forces aren’t independent

• forces often aren’t small by any reasonable measure

• Can forces due to object behavior be treated as modeling uncertainties?
– yes (to some extent) but the usual assumptions don’t apply:

• command and disturbance frequencies overlap

• Example: two people shaking hands
– how each person moves influences the forces evoked

• “disturbance” forces are state-dependent

– each may exert comparable forces and move at comparable speeds

• command & “disturbance” have comparable magnitude & frequency
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Alternative: Control Port Behavior

• Port behavior: 
– system properties and/or 

behaviors “seen” at an 
interaction port

• Interaction port: 
– characterized by conjugate 

variables that define power flow

• Key point:

 
 















s)(velocitie flows   

(forces) efforts   

 in        power 

1

1

t
n

t
n

ff

ee

P





f

e

fet

port behavior is unaffected 
by contact and interaction

Impedance & Admittance

• Impedance and admittance 
characterize interaction
– dynamic generalizations of 

resistance and conductance

– introduced by Oliver Heaviside

• Usually introduced for linear 
systems but generalize to 
nonlinear systems
– state-determined representation:

– this form may be derived from 
or depicted as a network model
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Constraint on input & output

Impedance & Admittance (continued)

• Admittance is the causal dual of 
impedance
– Admittance: flow out, effort in

– Impedance: effort out, flow in

• Linear system: admittance is the 
inverse of impedance

• Nonlinear system: 
– causal dual is well-defined:

– but may not correspond to any 
impedance

• the inverse may not exist 
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Impedance or Dynamic Stiffness?

• Impedance and admittance are 
port operators

• Impedance may also be defined 
as a dynamic generalization of 
stiffness
– effort out, displacement in

– best for mechanical systems 
because of the key role of 
configuration (generalized 
position)

• I prefer the general term 
“impedance” for any operator 
with motion in, effort out
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• I prefer the general term 
“admittance” for any operator 
with effort in, motion out

Interaction Control: Causal Considerations

• What’s the best input/output form for the manipulator?

• The set of objects likely to be manipulated includes
– inertias 

• minimal model of most movable objects

– kinematic constraints

• simplest description of surface contact

• Causal considerations:
– inertias prefer admittance causality

– constraints require admittance causality 

– compatible manipulator behavior should be an impedance

• An ideal controller should try to make the manipulator behave as an 
impedance
– Hence impedance control

– Hogan 1979, 1980, 1985, etc.

The Challenge of a Child’s Toy

E.D.Fasse & J.F.Broenink, U. Twente, NL
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Network Modeling Perspective on Interaction Control

• Port concept
– control interaction port behavior

– port behavior is unaffected by contact and interaction

• Causal analysis
– impedance and admittance characterize interaction

– object is likely an admittance

– (try to) control manipulator impedance

• Power exchange is possible with interaction
– power sources are commonly modeled as equivalent networks

• Thévenin equivalent

• Norton equivalent

• Can equivalent network structure be applied to interaction control?

Nonlinear Equivalent Networks

• Can equivalent networks be defined for nonlinear systems?
– Nonlinear impedance and admittance can be defined as above

– Thévenin & Norton sources can also be defined
– Hogan, N. (1985) Impedance Control:  An Approach to Manipulation.  

ASME J. Dynamic Systems Measurement & Control, Vol. 107, pp. 1-24.

• However…
– the simple connection is not guaranteed

• In other words:
– separating the pieces is always possible

– re-assembling them by superposition is not

Nonlinear Equivalent Network for Interaction Control

• One way to proceed:
– specify an equivalent network 

structure in the (desired) 
interaction behavior

– provides key superposition 
properties

• Specifically:
– nodic desired impedance

• does not require inertial 
reference frame

– “virtual” trajectory

• “virtual” as it need not be a 
realizable trajectory
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Virtual Trajectory

• Nodic impedance:
– Defines desired interaction 

dynamics
– Nodic because input velocity is 

defined relative to a “virtual” 
trajectory

• Virtual trajectory:
– like a motion controller’s 

reference or nominal trajectory 
but no assumption that 
dynamics are fast compared to 
motion

– “virtual” because it need not be 
realizable

• e.g., need not be confined 
to manipulator’s workspace
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Superposition of “Impedance Forces”

• Minimal object model is an 
inertia
– it responds to the sum of input 

forces 

– in network terms: it comes with 
an associated 1-junction
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• This guarantees linear
summation of component 
impedances…

• …even if the component 
impedances are nonlinear

Impedance Control Implementation

• Controlling robot impedance is an ideal
– like most control system goals it may be difficult to attain

• How do you control impedance or admittance?

• One primitive (but highly successful) approach: 
– Design low-impedance hardware

• Low-friction mechanism
– Kinematic chain of rigid links

• Effort-controlled actuators
– e.g., permanent-magnet brushless DC motors

– high-bandwidth current-controlled amplifiers

– Use feedback to increase output impedance

• (Nonlinear) position and velocity feedback control

• This has been called “simple” impedance control
– (more correctly “simple-minded” impedance control )
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Typical Robot Model

• Effort-driven inertia • Linkage kinematics transform 
interaction forces to interaction 
torques      ninteractiomotor ττθGωθ,CωθI 

θ: generalized coordinates, joint angles, 
configuration variables

ω: generalized velocities, joint angular velocities

τ: generalized forces, joint torques

I: configuration-dependent inertia

C: inertial coupling (Coriolis & centrifugal 
accelerations)

G: potential forces (gravitational torques)
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ωθJθθLXV
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X: interaction port (end-point) position

V: interaction port (end-point) velocity

Finteraction: interaction port force

L: mechanism kinematic equations

J: mechanism Jacobian

Simple Impedance Control

• Target end-point behavior
– Norton equivalent network with 

elastic and viscous impedance, 
possibly nonlinear

• Express as equivalent 
configuration-space behavior
– use kinematic transformations

• This defines a position-and-
velocity-feedback controller…
– A non-linear variant of PD 

(proportional+derivative) 
control

• …that will implement the target 
behavior
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Xo: virtual position

Vo: virtual velocity

K: displacement-dependent (elastic) force 
function

B: velocity-dependent force function

 
        ωθJVBθLXΚθJτ

FθJτ





oo
t

motor

impedance
t

motor

     
        
  ninteractio

t

oo
t

FθJ

ωθJVBθLXΚθJ

θGωθ,CωθI







Dynamics of controller impedance coupled 
to mechanism inertia with interaction port:

Mechanism Singularities

• Impedance control also facilitates interaction with the 
robot’s own mechanics
– Compare with motion control:

• Position control maps desired end-point trajectory onto 
configuration space
– Requires inverse kinematic equations

• Ill-defined, no general algebraic solution exists
– one end-point position usually corresponds to many 

configurations
– some end-point positions may not be reachable

• Resolved-rate motion control uses inverse Jacobian
– Locally linear approach, will find a solution if one exists
– At some configurations Jacobian becomes singular

• Motion is not possible in one or more directions

• A typical motion controller won’t work at or near these 
singular configurations
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Mechanism Kinematics

• Mechanism kinematics relate 
configuration space {θ} to 
workspace {X}
– In network terms this is like a 

multi-variable lever*

– Hence power conjugate 
variables are well-defined in 
opposite directions

• Generalized coordinates 
uniquely define mechanism 
configuration
– by definition

• Hence the following maps are 
always well-defined
– generalized coordinates 

(configuration space) to end-
point coordinates (workspace)

– generalized velocities to 
workspace velocity

– workspace force to generalized 
force 

– workspace momentum to 
generalized momentum

*A multiport modulated transformer

Control at Mechanism Singularities

• Simple impedance control law was derived by transforming desired 
behavior…
– Norton equivalent network in workspace coordinates

…from workspace to configuration space

• All of the required transformations are guaranteed well-defined at all
configurations
– X  θ

– V  ω

– τ  F

• Hence the simple impedance controller can operate near, at and 
through mechanism singularities
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t
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Generalized Coordinates: A Word of Caution

• Aside:
– Identification of generalized coordinates requires care

• Independently variable

• Uniquely define mechanism configuration

• Not themselves unique

– Actuator coordinates are often suitable, but not always

• Example: Stewart platform

– Identification of generalized forces also requires care

• Power conjugates of generalized velocities

• P = τtω or dW = τtdθ

– Actuator forces are often suitable, not always
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Suppose You Need Inverse Kinematics Anyway…

• Generally a tough computational problem

• Modeling & simulation afford simple, effective solutions
– Assume a simple impedance controller 

– Apply it to a simulated mechanism with simplified dynamics

– Guaranteed convergence properties
– Hogan 1984

– Slotine &Yoerger 1987

• Same approach works for redundant mechanisms
– Redundant: more generalized coordinates than workspace coordinates

– Inverse kinematics is fundamentally “ill-posed”

– Rate control based on Moore-Penrose pseudo-inverse suffers “drift”

– Proper analysis of effective stiffness eliminates drift
– Mussa-Ivaldi & Hogan 1991

Slotine, J.-J.E., Yoerger, D.R. (1987) A Rule-Based 
Inverse Kinematics Algorithm for Redundant 
Manipulators Int. J. Robotics & Automation 2(2):86-
89

Mussa-Ivaldi, F. A. and Hogan, N. (1991) Integrable 
Solutions of Kinematic Redundancy via Impedance 
Control. Int. J. Robotics Research, 10(5):481-491

Hogan, N. (1984) Some Computational Problems 
Simplified by Impedance Control, proc. ASME Conf. on 
Computers in Engineering, pp. 203-209.

Other Implementations: Intrinsically Variable Impedance

• Feedback control of impedance suffers inevitable imperfections
– “parasitic” sensor & actuator dynamics

– communication & computation delays

• Alternative: control impedance using intrinsic properties of the 
actuators and/or mechanism
– Variable stiffness, damping, inertia

– Resonance, anti-resonance

… etc.

• Impedance is NOT just damped spring-mass behavior

Intrinsically Variable Inertia

• Inertia is difficult to modulate via feedback but mechanism inertia is a 
strong function of configuration

• Use excess degrees of freedom to modulate inertia
– e.g., compare contact with the fist or the fingertips

• Consider the apparent (translational) inertia at the tip of a 3-link open-
chain planar mechanism
– Use mechanism transformation properties

• Translational inertia is usually characterized by
• Generalized (configuration space) inertia is

– Jacobian:

– Corresponding tip (workspace) inertia:

• Snag: J() is not square—inverse J()-1 does not exist

Mvp 
 ωθIη 

 ωθJv 
  pθJη t

  vθJθIθJp 1-t- )()(  
  1-t-

tip )()( θJθIθJM 

Causal Analysis

• Inertia is an admittance
– prefers integral causality

• Transform inverse configuration-space inertia 
– Corresponding tip (workspace) inertia

– This transformation is always well-defined

• Does I()-1always exist? 
– I() must be symmetric positive definite, hence its inverse exists

• Does Mtip
-1 always exist?

– yes, but sometimes it loses rank 

• inverse mass goes to zero in some directions—can’t move that way

– causal argument: input force can always be applied

• mechanism will “figure out” whether & how to move 

pMv 1
  ηθIω 1

      pθJθIθJv t1
     t11
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Intrinsically Variable Stiffness

• Engineering approaches
– Moving-core solenoid
– Variable-pressure air cylinder
– Pneumatic tension actuator

• McKibben “muscle”
– Separately-excited DC machine

• Fasse et al. 1994
…and many more

• Mammalian muscle
– complex underlying physics 
– stiffness increases with tension
– antagonist co-contraction increases 

stiffness (and maybe damping)

Moving-core solenoid
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Fasse, E. D., Hogan, N., Gomez, S. R., and 
Mehta, N. R. (1994) A Novel Variable Mechanical-
Impedance Electromechanical Actuator. Proc. 
Symp. Haptic Interfaces for Virtual Environment 
and Teleoperator Systems, ASME DSC-Vol. 55-1, 
pp. 311-318.

Opposing Actuators at a Joint

• Assume 
– constant moment arms

– linear force-length relation

• (grossly) simplified model of 
antagonist muscles about a 
joint

• Equivalent behavior:
• Opposing torques subtract

• Opposing impedances add
– Joint stiffness positive if actuator 

stiffness positive

f: force; l: length; k: actuator stiffness

q: joint angle; t: torque; K: joint stiffness

subscripts: g: agonist; n: antagonist, o: virtual
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Snag: Configuration-Dependent Moment Arms

• Connection of linear actuators 
usually makes moment arm 
vary with configuration

• Joint stiffness, K:
– Second term always positive

– First term may be negative
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More typical: 
change signs on 
the transformers
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This is the “Tent-pole” Effect

• Consequences of configuration-
dependent moment arms:

• Opposing “ideal” (zero-impedance) 
tension actuators

– agonist moment grows with angle, 
antagonist moment declines

– always unstable

• Constant-stiffness actuators
– stable only for limited tension

• Mammalian muscle:
– stiffness is proportional to tension

– good approximation of complex 
behavior

– can be stable for all tension

• Take-home messages:

• Kinematics matters
– “Kinematic” stiffness may 

dominate

• Impedance matters
– Zero output impedance may be 

highly undesirable

Contact and Coupled Instability

• A GENERAL Problem:
– Contact and interaction with objects couples their dynamics into the 

manipulator control system

– This change may cause instability

• Example: 
– integral-action motion controller

– coupling to more mass evokes instability

– Impedance control affords a solution:

• Make the manipulator impedance behave like a passive physical 
system

Hogan, N. (1988) On the Stability of Manipulators Performing Contact 
Tasks, IEEE Journal of Robotics and Automation, 4: 677-686.

Example: Integral-Action Motion Controller

• System: 
– Mass restrained by linear spring & 

damper, driven by control actuator & 
external force

• Controller:
– Integral of trajectory error

• System + controller:

• Isolated stability:
– Stability requires upper bound on 

controller gain
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s: Laplace variable
x: displacement variable
f: external force variable
u: control input variable
r: reference input variable
m: mass constant
b: damping constant
k: stiffness constant
c: actuator force constant
g: controller gain constant

Example (continued)

• Object mass:

• Coupled system:

• Coupled stability:

• Choose any positive controller gain 
that will ensure isolated stability:

• That controlled system is 
destabilized by coupling to a 
sufficiently large mass

 xsm  f 2
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me: object mass constant

Problem & Approach

• Problem:
– Find conditions to avoid instability due to contact & interaction

• Approach:
– Describe the manipulator and its controller as an equivalent physical 

system

– Find an (equivalent) physical behavior that will avoid contact/coupled 
instability

• Use our knowledge of physical system behavior and how it is 
constrained

– Design the controller to impose that desired interaction-port behavior
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General Object Dynamics

• Assume:
– Lagrangian dynamics

– Passive

– Neutrally stable in isolation

• Legendre transform:
– Kinetic co-energy to kinetic 

energy

– Lagrangian form to Hamiltonian 
form

• Hamiltonian = total system energy
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qe: (generalized) coordinates
L: Lagrangian
Ek

*: kinetic co-energy
Ep: potential energy
De: dissipative (generalized) forces
Pe: exogenous (generalized) forces
He: Hamiltonian
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   eee

t
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,E,E
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qqqpqp

qqqpqp

qqp













eeeee

eee

H

H

PDqp

pq








     epeekeee E,E,H qqpqp 

Sir William Rowan Hamilton

• William Rowan Hamilton
– Born 1805, Dublin, Ireland
– Knighted 1835
– First Foreign Associate elected to 

U.S. National Academy of Sciences
– Died 1865

• Accomplishments
– Optics
– Dynamics
– Quaternions
– Linear operators
– Graph theory
– …and more

– http://www.maths.tcd.ie/pub/
HistMath/People/Hamilton/

Aside: some Irishmen of note ☺

• Bishop George Berkeley (if a tree falls in the forest …)

• Robert Boyle (Boyle’s law ...)

• John Boyd Dunlop

• George Francis Fitzgerald (Lorentz-Fitzgerald contraction)

• William Rowan Hamilton

• William Thomson (Lord Kelvin)

• Joseph Larmor

• Charles Parsons

• Osborne Reynolds

• George Gabriel Stokes 

• William Sealy Gossett (Student of the t-test)

• Frank Wilcoxon (Rank-sum test)

Passivity

• Basic idea: system cannot supply power indefinitely 
– Many alternative definitions, the best are energy-based

• Wyatt et al. (1981)

• Passive: total system energy is lower-bounded
– More precisely, available energy is lower-bounded

• Power flux may be positive or negative
• Convention: power positive in

– Power in (positive)—no limit
– Power out (negative)—only until stored energy exhausted

• You can store as much energy as you want but you can withdraw only 
what was initially stored (a finite amount)

• Passivity ≠ stability
– Example:

• Interaction between similarly charged beads, one fixed, one free to 
move on a wire

Wyatt, J. L., Chua, L. O., Gannett, J. W., 
Göknar, I. C. and Green, D. N. (1981) 
Energy Concepts in the State-Space Theory 
of Nonlinear n-Ports: Part I — Passivity. 
IEEE Transactions on Circuits and Systems, 
Vol. CAS-28, No. 1, pp. 48-61.

Stability

• Stability:
– In the sense of convergence to equilibrium

• Use Lyapunov’s second method
– A generalization of energy-based analysis

– Lyapunov function: positive-definite non-decreasing state function

– Sufficient condition for asymptotic stability: Negative semi-definitive rate 
of change of Lyapunov function

• For physical systems total energy may be a useful candidate Lyapunov 
function
– Equilibria are at an energy minima

– Dissipation  energy reduction  convergence to equilibrium

– Hamiltonian form describes dynamics in terms of total energy

Steady State & Equilibrium

• Steady state:
– Kinetic energy is a positive-definite 

non-decreasing function of 
generalized momentum

• Assume:
– Dissipative (internal) forces vanish 

in steady-state

• Rules out static (Coulomb) 
friction

– Potential energy is a positive-
definite non-decreasing function of 
generalized displacement

• Steady-state is a unique 
equilibrium configuration

• Steady state is equilibrium at the 
origin of the state space {pe,qe}

ekeee EH pp0q 

0p0p  eekE

0P  eIsolated

  0q0D ee , Assume

eeeee H PDq0p 

e

p

e

k

e

e
EEH

ee
qqq

0p0p













0q0q  eepE

0
q

0p





ee

kE

e

p

e

e
EH

e
qq

0p








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Notation

• Represent partial derivatives using 
subscripts

• He is a scalar
– the Hamiltonian state function

• Heq is a vector
– Partial derivatives of the Hamiltonian 

w.r.t. each element of qe

• Hep is a vector
– Partial derivatives of the Hamiltonian 

w.r.t. each element of pe

e

e
ep

e

e
eq

H

H

p
H

q
H











 
    ee,eee,eeqe

eeepe ,

PqpDqpHp

qpHq









Isolated Stability

• Use the Hamiltonian as a Lyapunov 
function

– Positive-definite non-decreasing 
function of state

– Rate of change of stored energy = 
power in – power dissipated

• Sufficient condition for asymptotic 
stability: 

– Dissipative generalized forces are a 
positive-definite function of 
generalized momentum

• Dissipation may vanish if pe = 0
and system is not at equilibrium

• But pe = 0 does not describe any 
system trajectory

– LaSalle-Lefshetz theorem

– Energy decreases on all non-
equilibrium system trajectories

 
e

t
ee

t
ee

eeeq
t
epep

t
eqe

e
t
epe

t
eqe

dtdH

dtdH

dtdH

DqPq

PDHHHH

pHqH











0pDq

Dq

0P







eee
t
e

e
t
ee

e

    0dtdH  0

dtdH

 Isolated





Physical System Interaction

• Interaction of general dynamic 
systems

– Many possibilities: cascade, 
parallel, feedback…

• Two linear systems:

• Cascade coupling 
equations:

• Combination:

• Not power-continuous

• Interaction of physical systems
– If ui and yi are power conjugates
– Gi are impedances or admittances
– Connection must be power-

continuous:
• Power into coupled system 

must equal net power into 
component systems

 
  222

111

usGy

usGy




 
     sGsGsG

usGy

123

333




31

12

23

uu

yu

yy





221133 yuyuyu 

112233 uyuyuy 

• Physical systems cannot 
be cascade connected at 
an interaction port

Parallel & Feedback Connections

• Power continuity

• Parallel connection equations

• Power balance

—OK

• Feedback connection equations

• Power balance

—OK

123

123

uuu

yyy




112233 uyuyuy 

112233 uyuyuy 

231

213

yuu

uyy




223311 uyyuyu 

Interaction Port

• Assume coupling occurs at a set of 
points on the object Xe

– Let this define an interaction port

– Xe is as a function of generalized 
coordinates qe

– Generalized velocity determines 
port velocity

– Port force determines generalized 
force

• These relations are always well-
defined

– Guaranteed by the definition of 
generalized coordinates

 eee qLX 

  eeee qqJV 

  ee
t
ee FqJP 

This ensures 
power 
continuity

Simple Impedance

• Target (ideal) behavior of manipulator
– Elastic and viscous behavior

• In Hamiltonian form:
– Hamiltonian = potential energy

– Assume Vo = 0 for stability analysis

– Isolated: Vz = 0 or Fz = 0

– Sufficient condition for isolated 
asymptotic stability: 

• Unconstrained mass in Hamiltonian 
form

– Hamiltonian = kinetic energy

– Arbitrarily small mass

• Couple these with common velocity

   zozz VBXXKF 

   
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ozz
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zzzqz
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VVq
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
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
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  e
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1
eeH pMpp  

ee

ee

eepe

qV

Fp

pHq












0VFVF

VV
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z
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t
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z
t
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dtdH

constantconstant
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Fq0VV
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Mass Coupled to Simple Impedance

• Hamiltonian form
– Total energy = sum of components

• Assume positive-definite, non-
decreasing potential energy

– Equilibrium at (pe,qz) = (0,0)

• Rate of change of Hamiltonian:

• Sufficient condition for asymptotic 
stability

– And because mass is 
unconstrained, stability is global

     zzeezet HH,H qpqp 

    
 etpz

etpztqe

pHq

pHBqHp









BqHHBHHH

qHpH

t
ztp

t
tq

t
tptq

t
tpt

z
t
tqe

t
tpt

dtdH

dtdH









0pBq  e
t
z     0

General Object Coupled to Simple Impedance

• Total Hamiltonian (energy) is sum 
of components

• Assume 
– Both systems at equilibrium

– Interaction port positions coincide 
at coupling

• Total energy is a positive-definite, 
non-decreasing state function

• Rate of change of energy:

• The previous conditions sufficient for stability of
– Object in isolation
– Simple impedance coupled to arbitrarily small mass

• …ensure global asymptotic coupled stability
– Energy decreases on all non-equilibrium state trajectories
– True for objects of arbitrary dynamic order

     
        oeezepeekeet

zzeeeeet

HE,E,H

H,H,H

XqLqqpqp

qqpqp


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BqDq

BJHHJHDH

HHHHHJH
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t
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t
eqepe

t
zqt

dtdH

dtdH

 





Simple Impedance Controller Implementation

• Robot model:
– Inertial mechanism, statically 

balanced (or zero gravity), effort-
controlled actuators

• Hamiltonian = kinetic energy

• Controller:
– Transform simple impedance to 

manipulator configuration space

• Controller coupled to robot: 
– Same structure as a physical 

system with Hamiltonian Hc

  mm
1t

m2

1
mH pqIp 

qm: generalized coordinates 
(configuration variables)

pm: generalized momenta
Hm: Hamiltonian
I: inertia
Dm: dissipative (generalized) forces
Pa: actuator (generalized) forces
Xm,Vm,Fm: interaction port position, 

velocity, force
Lm,Jm: kinematic equations, Jacobian

 mmm

mmm

m
t
mammqm

mpm

qLX

qJV

FJPDHp

Hq



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     mmomm
t
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zmc HHH   mmm
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

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







Simple Impedance Controller Isolated Stability

• Rate of change of Hamiltonian:
• Energy decreases on all non-

equilibrium trajectories if 
– System is isolated 
– Dissipative forces are positive-

definite

• Minimum energy is at
– But this may not define a unique 

manipulator configuration
– Hamiltonian is a positive-definite 

non-decreasing function of qz but 
usually not of configuration qm

• Interaction-port impedance may not 
control internal degrees of freedom

– Could add terms to controller but 
for simplicity… 

• Assume:
– Non-redundant mechanism

– Non-singular Jacobian

• Then
– Hamiltonian is positive-definite & 

non-decreasing in a region about

• Local asymptotic stability

BVDq0F
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Simple Impedance Controller Coupled Stability

• Coupling kinematics
– Coupling relates qm to qe but no 

need to solve explicitly

– Total Hamiltonian (energy) is sum 
of components

• Rate of change of Hamiltonian

• Coupling cannot generate power

 emtt ,qqqq 
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• The previous conditions sufficient for stability of
– Object in isolation
– Simple impedance controlled robot

• …ensure local asymptotic coupled stability

Kinematic Errors

• Assume controller and interaction 
port kinematics differ

– Controller kinematics maps 
configuration to a point 

– Corresponding potential function 
is positive-definite, non-decreasing 
in a region about 

• Assume self-consistent controller 
kinematics

– The (erroneous) Jacobian is the 
correct derivative of the 
(erroneous) kinematics

– e.g., contact doesn’t occur where 
you planned 
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Kinematic Errors (continued)

• Hamiltonian of this controller 
coupled to the robot

– Hamiltonian state equations

– Rate of change of the Hamiltonian

– In isolation

• Previous conditions on Dm & B are 
sufficient for isolated local 
asymptotic stability
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



Insensitivity to Kinematic Errors

• The same conditions are also 
sufficient to ensure local 
asymptotic coupled stability

– Coupled system Hamiltonian and 
its rate of change:

• Stability properties are insensitive 
to kinematic errors

– Provided they are self-consistent

• Note that these results do not 
require small kinematic errors

– Could arise when contact occurs at 
unexpected locations

– e.g., on the robot links rather than 
the end-point
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Remarks

• Interaction stability
– The above results can be extended

• Neutrally stable objects

• Kinematic constraints
– no dynamics

• Interface dynamics
– e.g., due to sensors

– “Simple” impedance control can 
provide a robust solution to the 
contact instability problem

• But it depends heavily on 
ideal effort-controlled 
actuators

• Structure matters
– Dynamics of physical systems are 

constrained in useful ways

• It may be beneficial to impose
physical system structure on a 
general dynamic system

– e.g. a robot controller

• That’s the main idea underlying 
impedance control

Apparent Mechanical Behavior

 Apparent behavior matters
 —what something feels like where you touch it.

 Contact coordinates are usually different from generalized coordinates
 e.g. robot joint angles vs. end-point coordinates

 Mechanical physics constrains how behavior transforms
 Changing coordinates affects physical variables differently

 Position, velocity, force, momentum, (etc.) transform differently
 Conjugate variables are uniquely defined in opposite directions

 Generalized coordinates uniquely determine contact coordinates
 Contact forces uniquely define generalized forces

 Redundancy doesn’t matter
 True with more generalized coordinates than contact coordinates

 A consequence of bi-lateral interaction and power continuity

Simple Impedance Controller

 As much design as control
 Highly-backdrivable mechanics

 Current-controlled motors
 No or minimal gearing
 Very low friction
 Inertia-dominated dynamics

 Specify desired end-point behavior
 Nonlinear spring & damper

 Transform to actuator coordinates
 Transformations are guaranteed 

well-defined

 Crude—but effective!
 Doesn’t compensate for inertia or 

friction but …
 Can operate at “singularities”
 Strongly robust coupled stability

    ninteractiomotor ττωθ,CωθI 

 
   

  ninteractio
t

ninteractio FθJτ

ωθJθθLXV

θLX








     
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FθJωθ,CωθI


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ninteractio
t

   VVBXXΚF  ooimpedance

 
        ωθJVBθLXΚθJτ

FθJτ





oo
t

motor

impedance
t

motor

Finteraction: interaction port force
L: mechanism kinematics
J: mechanism Jacobian
Xo: virtual position
Vo: virtual velocity
K: displacement-dependent force
B: velocity-dependent force

θ: generalized coordinates
ω: generalized velocities
τ: generalized forces
I: configuration-dependent inertia
C: Coriolis & centrifugal terms
X: interaction port position
V: interaction port velocity

Robot-
Mediated 
Therapy

 Contact and interaction are essential
 More than twice the benefit of conventional therapy alone
 Fewer side effects (joint pain)

Hogan, N., Krebs, H.I., Rohrer, B., Palazzolo, J.J., Dipietro, L., Fasoli, S.E., Stein, J., Frontera, W.R., Volpe, B.T., (2006) Motions 
or Muscles? Some Behavioral Factors Underlying Robotic Assistance of Motor Recovery. VA Journal of Rehabilitation Research 
and Development, 43(5):605-618.



11

Contact Robotics Requires High 
Force & Low, Variable Impedance

 Present Actuator Technologies
 Electromagnetic: low force 

density
 Hydraulic, geared 

electromagnetic: high intrinsic 
impedance

 Compressed-gas: limited by low-
frequency “parasitic” dynamics

 Feather-light touch at forces up to and beyond body 
weight
 High force density (force/mass ratio)
 Low output (driving-point) mechanical impedance

The Appeal of Force Feedback
 Equation of motion:

 Force feedback controller:

 Resulting equation of motion:

 Increasing Gf reduces apparent inertia, friction

eaf FFxxFxm  ),( 

efa FGF 

e
f

f

f

F
G

xxF

G

xm





 1

),(

1



SNAG—Coupled Instability

Coupled Stability via Passivity
 A passive impedance has Z(s) positive real

 Phase of Z(s) lies between +90° and -90°
 System may store, dissipate & return energy—
 but cannot be “pumped” to supply power continuously.

 Physical interaction resembles unity negative feedback
 Couple two passive systems

 Combined phase lies between +180° and -180° STABLE
 No constraint on magnitude

 Controller design constraint:
 Imposing passive robot impedance guarantees stability when coupled 

to all passive objects.
 Arbitrarily complicated collections of springs, masses, dampers, 

constraints, etc.

Colgate, J. E. and Hogan, N. (1988) Robust Control of Dynamically Interacting 
Systems, International Journal of Control, Vol. 48, No. 1, pp. 65-88.

Hogan, N. (1988) On the Stability of Manipulators Performing Contact Tasks,
IEEE Journal of Robotics and Automation, 4: 677-686. 

Force Feedback and Passivity
 Passivity is hard to achieve

 Discrete-time implementation exceeds phase constraint at high frequencies
 High-gain force feedback with resonant dynamics between sensor & 

actuator violates passivity

 With force feedback passivity is conservative
 With any resonant dynamics between sensor & actuator, force feedback 

inertia reduction by 50% or more is non-passive [Colgate ’89]
 Severely limits force feedback loop gain

Complementary Stability
 Define a bounded set of environment port operators:

 Definition: A robot represented by Z achieves complementary 
stability with the set Y if the coupled system is robustly stable

 Stability analysis by the small gain theorem
 Additive perturbation structure is not essential

)()()()( ssWsYsY n  1)( 


s

Controller Design via
Constrained Optimization
 Prerequisites

 Model of robot (with at least one resonance)
 Model (or data representation) of environment port admittance
 Assumed controller structure with selected variable parameters

 Algorithm
 Broad search finds parameter combinations to satisfy complementary 

stability
 Select best-performing stable controller(s) based on robot impedance 

magnitude
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Controller Design Example
 Robot model:

 Single-resonance, with force 
transducer

 Control structure:
 Vary p, z, Kdc

 Target impedance Z=0
 Environment model:

 Stability by structured singular value
 Performance “cost”:

 Parameters based on laboratory robot module, literature on 
human arm endpoint dynamics

edca F
ps

zs

z

p
KF

)(

)(







1

0

)(log




jZC

Example Results
Cost C at maximum 
stable Kdc versus p
and z

Region “A” indicates 
low-frequency lag 
control

Region “B” indicates 
high-frequency lead 
control

Example Results (continued)

Algorithm returns non-obvious controller parameters.

Implementation

 Apply control to physical system
 Screw-driven robot module
 140 N continuous force capacity
 Up to 20 N Coulomb friction, position 

dependent
 Approximately 6 kg endpoint inertia
 High-frequency noise in force sensor 

precludes high-frequency (lead) control

 Model is linear, robot significantly not
 Robust testbed for control approach

Stability
 Contact tests with spring (and plastic block) environments

Last column indicates behavior coupled to human arm

“-” indicates unwanted vibration

Model-based algorithm results are more conservative 
than experiments, less conservative than passivity

Achieved Performance

Performance best tested by “feel”

Static/Coulomb friction:

less than 0.3 N (66x reduction)

Inertia reduction:

1.75 kg with Kdc=2000 (3.4x reduction)

1.2 kg with Kdc=3000 (5x reduction)

Performance and stability are significantly enhanced

—despite differences between model and robot.
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Passivity
 A powerful tool for sophisticated 

controller design
 Nonlinear, Adaptive, Robust
 Fundamentally a physical 

system concept

 Passive interactive behavior 
guarantees contact stability

 Drawback: conservative for 
force feedback

 Reduce conservativeness:
 Optimize for interaction with a 

limited set of objects
 —e.g. humans

Buerger, S.P. and Hogan, N. Complementary Stability and Loop-Shaping for Improved Human-Robot Interaction. IEEE Transactions 
on Robotics 2007 23:232-244

Robot Impedance Control
 Biologically-inspired approach to interaction control

 Controller establishes a relation between force and motion (Hogan, 
1980, 1985, ...)

 Two implementations: 
 impedance (force-out-for-motion-in) 

 like “frequency-dependent” stiffness
 admittance (motion-out-for-force-in) 

 like “frequency-dependent” inertia
 controlling robot impedance is ideal, controlling robot admittance is 

often easier

 Works well for interaction tasks:
 Automotive assembly (Case Western Reserve University, US)

 Food packaging (Technical University Delft, NL)

 Hazardous material handling (Oak Ridge National Labs, US)

 Automated excavation (University of Sydney, Australia)

 … and many more

Human-Robot Cooperation

Toyota Motor Corporation Vehicle Assembly

Biomimetic Artificial Arms

 Application: Motorized artificial arms for amputees 
 Goal: Provide more natural function

 Most arm amputees are uni-lateral, with an unimpaired arm
 Dexterous artificial hands are a tough technical challenge

 No practical solutions are yet available
 Fine-motor tasks are performed with the unimpaired hand
 The prosthetic arm serves the non-dominant role

 Support objects, steady them, etc.

 Hence skillful control of physical contact is the key to arm 
prosthesis function 
 Arm-waving is not enough!

 Innovation: A biomimetic arm prosthesis with 
controllable mechanical impedance

Biomimetic Motorized Prosthetic
Arms

 Two-way interaction:
 With the amputee’s intact limb segments
 With objects (s)he manipulates

 Controlling interaction is essential

Dexterity Requires 
Interaction Control
 A prosthesis must control two 

essential  physical interactions:
 With the world

 The key to functional tasks
 With the natural limbs

 The key to coordination

 Conventional motion control 
doesn’t work
 Among many reasons, it 

requires excessive information 
and control precision

 Impedance control* can mimic 
natural arm control
 Enables multi-joint 

coordination and coping with 
difficult mechanical constraints

*Hogan, 1980, 1985 etc. Hogan & Buerger, 2005 …
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“Natural” Impedance Control Details
 Programmable prosthesis “emulator”

 A “flight simulator” for amputation prostheses
 Enables precisely controlled study of alternatives

 Trans-humeral (above-elbow) amputation in these studies
 Motorized elbow, cable-operated terminal device

 Conventional two-bladed hook

 Command and control interface: EMG from residual biceps & triceps
 Electrodes built into socket over limb residuum
 Optimal EMG magnitude estimation*

 “Natural” Impedance Control mimics natural muscle behavior
 Differential muscle contraction determines elbow equilibrium position

 Highly “back-drivable” dynamics allows displacement from equilibrium
 Responsive to external forces or from other body segments

 Antagonist co-contraction determines impedance
 Elbow stiffness & damping increase with sum of EMG magnitudes
 Enables stable interaction, load-bearing, force transmission

*Clancy & Hogan 1995, 1997

Enables Functional 
Bi-Manual Tasks
 Key features of “natural 

impedance control”

 Controlled deflection under 
load similar to natural elbow 
facilitates
 Bi-manual coordination
 Production of useful work

 Guaranteed stability during 
physical interaction facilitates

 “Carefree” interaction with 
other body parts

 The other hand, the foot, the 
thigh …

Implications of Natural Impedance 
Control for Brain-Machine Interfaces

 Easily controls “excess” (redundant) degrees of freedom
 Position of the hand and impedance of the joints is sufficient to achieve 

smooth coordination*
 Requirement: Sufficiently “back-drivable” hardware is essential

 Next step: Replace EMG with EEG
 … or whatever interface has the required capacity

*Mussa-Ivaldi & Hogan 1991

 Simplifies the human-machine interface
 Reduces the precision and channel 

capacity required for command and control
 Readily scales to many degrees of freedom

 Impedance control is a key feature of
 NASA/GM’s Robonaut 2
 Toyota’s vehicle assembly
 Kuka/DLR’s “lightweight arm” 

 …and many more

Physical System 
Theory
 Is there a general theory of physical 

systems?
 Rich history: Maxwell (1873) Firestone (1933) 

Trent (1955) …

 Most comprehensive: Paynter (1961)
 Elaborated by many, notably

Peter Breedveld, U. Twente, Netherlands

 Key concept: Interaction port
 Every distinct way power can be exchanged 

defines a port
 Identifying ports enables reticulation

 Forming a network of interconnected pieces
 This is what Kron (1936) called diakoptics (Greek for “tearing”)

 Reticulation may proceed until each piece is an idealized element…
 The familiar mass, spring, damper, resistor capacitor inductor, etc

 …but that’s not essential
 Network models are not restricted to “lumped-parameter” models

Henry Martyn Paynter

MIT Mechanical Engineering Faculty

ASME Rufus Oldenburger Medalist

Network Physical System Models

 Network models are versatile
 The pieces connected may be nonlinear and multivariable
 They readily yield state-determined representations

 The basis of (almost) all advanced controller designs

 Network physical system models are highly structured

 Remarkably, a symmetric multi-port connection must be linear
 Even though the connected pieces / elements may be nonlinear*

 This has far-reaching consequences
 e.g. Tellegen’s theorem

 Force-like variables (efforts) and motion-like 
variables (flows) occupy orthogonal sub-spaces

 Completely independent of the network elements

 tf ,xx 

*Proof: 

Hogan N. Modularity And Causality In 
Physical System Modeling. Journal Of 
Dynamic Systems Measurement And 
Control 109: 384-391, 1987. 

Paynter HM, and Busch-Vishniac IJ. Wave-
scattering Approaches to Conservation and 
Causality. Journal of the Franklin Institute
325: 295-313, 1988.

Network Model Power Ports
 Two real-valued variables quantify power 

flow between two subsystems
 Define u to quantify power flow out of A

 Square it to ensure sign-definite power flow
 Define v to quantify power out of B

 Square it to ensure sign-definite power flow

 Net power is a difference of squares
 Derivation motivated by wave variables but not 

restricted to wave transmission

 These variables define a power port

 Power flow may always be expressed as a 
product of two real-valued variables

 Force, velocity; voltage, current; effort, flow; etc.
 c is a domain-dependent scaling constant 

 …but that’s not essential

2
, uP outA 

2
, vP outB 

0,  outAPu

0,  outBPv

22
,,, vuPPP outBoutABAnet 

    cvuvucP BAnet ,

 vuce 

  cvuf 
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Network Model Connectors
 With only 1-port elements only 

two may be connected

 Combining 2-port elements yields 
another 2-port
 Only linear chains terminated by 

1-ports may be connected

 3-port elements are necessary for 
general networks

 They are also sufficient
 Combinations of 3-port elements 

yield
 4-port elements
 n-port elements

Three-Port Connectors

 Two vectors of 3 real-valued 
variables characterize power flow 
into and out of a 3-port connector

 Power flows are the squares of the 
lengths of these vectors

 The connector equations are an 
algebraic relation between these 
input and output variables
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Power Continuity
 An ideal connector is power-continuous

 Power in = power out means the lengths 
of u and v must be equal

 The algebraic relation 
is equivalent to a rotation operator

 The rotation matrix is orthogonal
 Rows (or columns) are

 Orthogonal
 Unit magnitude
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Symmetric 3-port Connectors
 Assume invariance under permutation

 exchanging any two ports doesn’t matter

 Orthogonality of S yields 
 two equations for a an b
 with only two solutions
 a and b must be constant

 There are only two symmetric, power-
continuous, three-port connectors

 Both are linear
 Independent of the (non)linearity of the systems 

they connect
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Physical & Computational 
Dynamics Combined
 Controlled system dynamics emerge from physical 

dynamics and signal processing
 A central challenge of motor neuroscience:

 How much behavior is due to (bio-)mechanics?
 How much is due to (neural) information processing?

 Need: a general theory of actuators 
 signal-to-energy interfaces

 with

 Two unambiguously distinct
components

 “forward path” dynamics
 Signals influence physical events

 Interactive dynamics
 Physical events influence the 

response to signals

Video courtesy of Prof. Andy Ruina, Cornell University

Equivalent Networks

 Equivalent circuits: 
 Helmholtz (1853) Thevenin (1883) Heaviside (1925) Mayer (1926) Norton (1926) 

 Mayer & Norton published in the same month of 1926!

 Two key benefits
 Prodigious simplification

 Arbitrarily complex systems: simpler functionally equivalent form
 Unambiguously identifiable

 Both components experimentally measurable 

 For linear systems, equivalent networks serve as interface elements
 “source” element describes “forward path” dynamics

 Independent of interaction
 Equivalent “resistance” describes interactive dynamics

 Independent of forward-path dynamics
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Nonlinear Equivalent Networks?
 Can equivalent networks be extended to nonlinear systems?

 Don’t anticipate a complete correspondence—but linear network topology encourages 
optimism

 Can nonlinear equivalent networks be defined?
 Can their components be identified unambiguously?

 Linear equivalent network: four possible forms, largely interchangeable
 Two types of connection

 Common motion (Helmholtz/Thevenin) common effort (Mayer/Norton)
 Two operational forms

 Impedance (motion in/force out) admittance (force in/motion out)

 Nonlinear system:
 Some forms may not be well-defined

 e.g. mechanical linkages are “naturally” admittances
 Unambiguous identification precludes some types

Neuro-Muscular Actuators
 Human skeleton 

 Inertial mechanics comes with a linear common-motion connection
 Helmholtz/Thevenin network, operational form: admittance

 Human neuro-muscular system 
 Operational form can’t be admittance 

 Non-monotonic force-length curve—same force at different lengths
 Impedance form is compatible with skeletal admittance

 Which network type?
 The “obvious” choice: a “force source” modified by interactive dynamics

 common-motion (Helmholtz/Thevenin) network

 This assumption is ubiquitous in computational motor neuroscience 
 The forward path specifies nominal muscular forces 

 Snag: Interactive dynamics cannot be identified unambiguously

    
i

iτωθ,CωθI 

Identifying Equivalent Networks
 Observation only from the contact point (interaction port)

 To identify the source term, enforce zero power exchange
 Zero motion—i.e. immobilize the (neuro-muscular) actuator

 Problem: steady-state force due to interactive dynamics
 If zero, can’t stabilize the skeleton
 If non-zero, can’t be distinguished from “source” force

 Alternative: a “motion source” modified by interactive dynamics
 Common-effort (Mayer/Norton) network

 The forward path specifies a nominal trajectory and/or posture 
 Interactive dynamics operate on deviations from nominal motion

 Identification:
 If the interactive dynamics are locally observable, Identically zero 

force identifies the motion source—unambiguously

 The biological actuator requires a Mayer/Norton network

Research Required

 The idea of “putting physics in control” is not at all new
 But a practical, systematic approach has not been fully articulated

 A general physical system theory remains elusive

 Establishing a solid mathematical foundation is important
 Differential geometry seems promising

 e.g. ongoing work on a port-controlled Hamiltonian formulation

 But there’s a tradeoff:

Mathematical rigor vs. intuitive comprehension?

A tough challenge!


