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Coping with Contact

The robots are coming!
Soon they'll be everywhere, rubbing shoulders with people
How do you design their controllers to cope with contact?

A “signals” perspective permeates controller design
Pro: Operational modularity enables complex system design
Con: Limited to one-way interaction

The core challenge of contact robotics:
Physical reality: interactions are two-way
= Contacted object dynamics couple to machine dynamics
= Composite behavior is not a simple composition of operators

An alternative approach:
Is it useful to describe control systems as physical systems?

Information and Energy

How can that help? Isn't a control system always a physical system?

Physical dynamics process energy, computers process information

= Computers and brains consume available energy, generate entropy, and get hot. That
may limit their performance and speed, but...

Energy is largely irrelevant to what computers do

Physical constraints on computation & signal processing
= Temporal causality (no output before input)
= Bounded variables (no infinite quantities)
...and that seems to be all

Physical systems are (much) more constrained...
By the laws of mechanical physics—especially thermodynamics

= A mechanical engineer's working definition

...and that may be used to advantage

Interaction Control

* Manipulation requires interaction
— object behavior affects control of force and motion
+ Independent control of force and motion is not possible
— object behavior relates force and motion
« contact a rigid surface: kinematic constraint
+ move an object: dynamic constraint
* Accurate control of force or motion requires detailed models of
« manipulator dynamics
* object dynamics
— object dynamics are usually known poorly, often not at all
— ... one important example: a collaborating human

.

.

Object Behavior

Can object forces be treated as external (exogenous) disturbances?
— the usual assumptions don’t apply:
« “disturbance” forces aren’t independent
« forces often aren’t small by any reasonable measure
Can forces due to object behavior be treated as modeling uncertainties?
— yes (to some extent) but the usual assumptions don’t apply:
+ command and disturbance frequencies overlap
Example: two people shaking hands
how each person moves influences the forces evoked
+ “disturbance” forces are state-dependent
— each may exert comparable forces and move at comparable speeds
« command & “disturbance” have comparable magnitude & frequency




Alternative: Control Port Behavior

«  Port behavior:
— system properties and/or
behaviors “seen” at an
interaction port power in P=e'f

* Interaction port: e=[e e, efforts(forces)

characterized by conjugate f=[f,1,] flows (velocities)

variables that define power flow
« Key point:

port behavior is unaffected
by contact and interaction

Impedance & Admittance

i . . e(s) 1
lmpedan(%e apd adml.ttance electrical capacitor Z(s)= Q =—
characterize interaction i(s) Cs

d i lizati s -
y{)amlc gencratizations o electricalinductor  Z(s) = @ =L(s)
resistance and conductance i(s)
introduced by Oliver Heaviside
2=2(z,V) State equations
Usually introduced for linear F=2Z,(2V)  Outputequations
systems but generalize to P-Flv Constraint on input & output

nonlinear systems
state-determined representation:

— this form may be derived from
or depicted as a network model
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Impedance & Admittance (continued)

*  Admittance is the causal dual of  y(s)=z(s)"

impedance electrical capacitor

— Admittance: flow out, effort in i(S)
Impedance: effort out, flow in Y(s)= @ =Cs
+ Linear system: admittance is the
inverse of impedance Y=Y.(y.F)
) Vv =Y(y.F)
» Nonlinear system: P_Flv

— causal dual is well-defined:

yeR",FeR"VeR"Pech

— but may not correspond to any
impedance

« the inverse may not exist

Impedance or Dynamic Stiffness?

Impedance and admittance are
port operators 2=2,(2.X)
Impedance may also be defined F=2,(zX)
i lizati f
asa dynamic generalization o AW = Flax
stiffness
n m m
— effort out, displacement in ZeRLFeRLX R PeR
— best for mechanical systems
because of the key role of
configuration (generalized
position)

1 prefer the general term I prefer the general term
“impedance” for any operator “admittance” for any operator
with motion in, effort out with effort in, motion out

Interaction Control: Causal Considerations

*  What’s the best input/output form for the manipulator?
« The set of objects likely to be manipulated includes
— inertias
« minimal model of most movable objects
kinematic constraints
« simplest description of surface contact
* Causal considerations:
— inertias prefer admittance causality
constraints require admittance causality
— compatible manipulator behavior should be an impedance
* Anideal controller should try to make the manipulator behave as an
impedance
— Hence impedance control
— Hogan 1979, 1980, 1985, ctc.

The Challenge of a Child’s Toy




Network Modeling Perspective on Interaction Control

Port concept
— control interaction port behavior
— port behavior is unaffected by contact and interaction
Causal analysis
— impedance and admittance characterize interaction
object is likely an admittance
— (try to) control manipulator impedance
Power exchange is possible with interaction
— power sources are commonly modeled as equivalent networks
« Thévenin equivalent
« Norton equivalent

Can equivalent network structure be applied to interaction control?

Nonlinear Equivalent Networks

« Can equivalent networks be defined for nonlinear systems?
— Nonlinear impedance and admittance can be defined as above
— Thévenin & Norton sources can also be defined

— Hogan, N. (1985) Impedance Control: An Approach to Manipulation.
ASME J. Dynamic Systems Measurement & Control, Vol. 107, pp. 1-24.

* However.

the simple connection is not guaranteed
« In other words:
— separating the pieces is always possible
— re-assembling them by superposition is not

Nonlinear Equivalent Network for Interaction Control

One way to proceed: Vo=V, e} virtual trajectory
— specify an equivalent network AV=V,-V
structure in the (desired)

network junction structure (0 junction)
interaction behavior

2=2(2,AV):{c}
F=Z,(2,AV):{c}

: {c} denotes modulation by control inputs

provides key superposition } nodicimpedance
properties
Specifically:
nodic desired impedance
* does not require inertial . E ersction
reference ﬁime ul,’:ﬁfj@v“;s" =(ﬂﬁ
— “virtual” trajectory AV:L
« “virtual” as it need not be a

. . dic impedance
realizable trajectory nodi impedance 7

Norton equivalent network

Virtual Trajectory

* Nodic impedance:

. . . \A v
Defines desired interaction > >
dynamics k
— Nodic because input velocity is ‘—E—E

defined relative to a “virtual” b

trajectory virtual trajectory  interaction port
Virtual trajectory: Vo v,

like a motion controller’s k

reference or nominal trajectory
but no assumption that

AN,
—= P
b

dynamics are fast compared to nodic impedance object
motion
— “virtual” because it need not be V.S, g \1/ Em
X 0Sr—0—T— I
realizable ) J interaction
+ e.g., need not be confined trajectory port
to manipulator’s workspace
P P ]/k:C/ \R b

nodic impedance

.

Superposition of “Impedance Forces”

Minimal object model is an This guarantees linear
inertia summation of component

; ) impedances. ..
— it responds to the sum of input

forces ...even if the component

— in network terms: it comes with impedances are nonlinear

an associated 1-junction
AV, =V, -V
2= Z4(2,AV))
B =Zo(#.8V) VS

AW A

AV, =V, -V Vu]:sf\
2, =Z4(2,,AV,) 0
B=Zy(@4V) 4 4

Fa v ;
——=l=1m V=m(F+E+F)

AV, =V, -V
2= L (23,4V;)
Fy = Zy(23,AV;) Z5:Z

VnﬁSEO;F_

Impedance Control Implementation

« Controlling robot impedance is an ideal
— like most control system goals it may be difficult to attain
* How do you control impedance or admittance?
«  One primitive (but highly successful) approach:
— Design low-impedance hardware
« Low-friction mechanism
— Kinematic chain of rigid links
« Effort-controlled actuators
— e.g., permanent-magnet brushless DC motors
— high-bandwidth current-controlled amplifiers
— Use feedback to increase output impedance
« (Nonlinear) position and velocity feedback control
« This has been called “simple” impedance control

(more correctly “simple-minded” impedance control )




Typical Robot Model

Effort-driven inertia

1(0)é> +C(0,0)+ G(0) = Tror *+ Tintraction
8: generalized coordinates, joint angles,
configuration variables

w: generalized velocities, joint angular velocities
T: generalized forces, joint torques

I: configuration-dependent inertia

C: inertial coupling (Coriolis & centrifugal
accelerations)

G: potential forces (gravitational torques)

Linkage kinematics transform
interaction forces to interaction
torques

X=L(0)
V=X =(6L/00)0 = J(0)o

Tineraction = I(0) Feracton

X: interaction port (end-point) position
V: interaction port (end-point) velocity
Finteraction: iNteraction port force

L: mechanism kinematic equations

J: mechanism Jacobian

Simple Impedance Control

« Target end-point behavior
— Norton equivalent network with
elastic and viscous impedance,
possibly nonlinear
« Express as equivalent
configuration-space behavior
— use kinematic transformations
« This defines a position-and-
velocity-feedback controller...
A non-linear variant of PD
(proportional+derivative)
control
« ...that will implement the target
behavior

Finpedance = K(X, = X)+ B(V, ~ V)
X,: virtual position
V,: virtual velocity

K: displacement-dependent (elastic) force
function

B: velocity-dependent force function

t
Trotor = 3(8) Finpecance

Tmotor = J(0)/ (K (X, ~L(8))+ B(V, - J(8)00))

Dynamics of controller impedance coupled
to mechanism inertia with interaction port:

1(0)0 + C(0,0)+ G(0) =
3(0)' (K(X, ~L(0))+ B(V, —J(0)o))

+3(0)' Feraciion

Mechanism Singularities

« Impedance control also facilitates interaction with the

robot’s own mechanics
— Compare with motion control:

« Position control maps desired end-point trajectory onto

configuration space

Requires inverse kinematic equations
« Ill-defined, no general algebraic solution exists

X=L(6)

— one end-point position usually corresponds to many

configurations

— some end-point positions may not be reachable
* Resolved-rate motion control uses inverse Jacobian Vi
— Locally linear approach, will find a solution if one exists = (0

At some configurations Jacobian becomes singular

« Motion is not possible in one or more directions
+ A typical motion controller won’t work at or near these

singular configurations

Oesires = L (Xesirea )

-1
Ogesied =I(0)” Veesrea

Mechanism Kinematics

* Mechanism kinematics relate
configuration space {0} to
workspace {X}

In network terms this is like a
multi-variable lever*

Hence power conjugate
variables are well-defined in
opposite directions

n -

o]

T
= MTF—
[0]
0

R

*A multiport modulated transformer

* Generalized coordinates
uniquely define mechanism
configuration

by definition

« Hence the following maps are

always well-defined
generalized coordinates
(configuration space) to end-
point coordinates (workspace)

— generalized velocities to
workspace velocity

— workspace force to generalized
force
workspace momentum to
generalized momentum

Control at Mechanism Singularities

+ Simple impedance control law was derived by transforming desired

behavior...

— Norton equivalent network in workspace coordinates

...from workspace to configuration space
+ All of the required transformations are guaranteed well-defined at all

configurations
- X<0

~Veo Tnoor = J(0)/ (K (X, ~L(8))+ B(V, ~ I (0)o>))

1<F

+ Hence the simple impedance controller can operate near, at and

through mechanism singularities

Generalized Coordinates: A Word of Caution

¢ Aside:

— Identification of generalized coordinates requires care

« Independently variable

+ Uniquely define mechanism configuration

+ Not themselves unique

— Actuator coordinates are often suitable, but not always

« Example: Stewart platform

— Identification of generalized forces also requires care

+ Power conjugates of generalized velocities
« P=1a or dwW = 7'de
— Actuator forces are often suitable, not always




Suppose You Need Inverse Kinematics Anyway...

*  Generally a tough computational problem

¢ Modeling & simulation afford simple, effective solutions
— Assume a simple impedance controller
— Apply it to a simulated mechanism with simplified dynamics

_ ars . jes  Hogan, N. (1984) Some Computational Problems
Guaranteed convergence properties sSimplified hylmpedancecurﬁml proc ASME Conf. on
— Hogan 1984

Computers in Engineering, pp. 203-
— Slotine &Yoerger 1987 Slotine, J.-.E., Yoerger, D.R. (1987) A Rule-Based

inverse Kinematics Algorithm for Redundant
Manipulators Int. J. Robotics & Automation 2(2):86-
89

« Same approach works for redundant mechanisms
Redundant: more generalized coordinates than workspace coordinates
— Inverse kinematics is fundamentally “ill-posed”
— Rate control based on Moore-Penrose pseudo-inverse suffers “drift”
— Proper analysis of effective stiffness eliminates drift

— Mussa-Ivaldi & Hogan 1991 MussacIvald, F. A and Hogan, N. (1991) Integrable

olutions of Kinematic Redundancy via impedance
Control. Int. J. Robotics Research, 10(5):481-491

Other Implementations: Intrinsically Variable Impedance

Feedback control of impedance suffers inevitable imperfections

— “parasitic” sensor & actuator dynamics

— communication & computation delays
Alternative: control impedance using intrinsic properties of the
actuators and/or mechanism

— Variable stiffness, damping, inertia

Resonance, anti-resonance
.. efc.

« Impedance is NOT just damped spring-mass behavior

Intrinsically Variable Inertia

« Inertia is difficult to modulate via feedback but mechanism inertia is a
strong function of configuration
« Use excess degrees of freedom to modulate inertia
— e.g., compare contact with the fist or the fingertips
« Consider the apparent (translational) inertia at the tip of a 3-link open-
chain planar mechanism
Use mechanism transformation properties
+ Translational inertia is usually characterized by ~p=Mv

« Generalized (configuration space) inertia is n=10)o
— Jacobian: v=J 0)?1
n=J(0)'p

b IO 1OI0)'y
My, =J(©0) ' 1(0)3(0)"
+ Snag: J(0) is not square—inverse J(8)"' does not exist

— Corresponding tip (workspace) inertia:

Causal Analysis

Inertia is an admittance v
prefers integral causality o= 1(9)7l'l
Transform inverse configuration-space inertia
— Corresponding tip (workspace) inertia v=J(0
— This transformation is always well-defined M;:, = J(O)I(O)’ J0)

Does I(8)'always exist?
— 1(8) must be symmetric positive definite, hence its inverse exists

Does My,
— yes, but sometimes it loses rank

- always exist?

 inverse mass goes to zero in some directions—can’t move that way
— causal argument: input force can always be applied
« mechanism will “figure out” whether & how to move

Intrinsically Variable Stiffness

« Engineering approaches v eraaciene ]
— Moving-core solenoid 0s
— Variable-pressure air cylinder

— Pneumatic tension actuator q 05 1 15
* McKibben “muscle”

— Separately-excited DC machine

force

« Fasse etal. 1994
..and many more Fasse, E. D., Hogan, N., Gom:

Impedance Electromechanical Actuator. Proc.
Symp. Haptic Interfaces for Virtual Environment

and Teleoperator Systems, ASME DSC-Vol. 55-1,

*  Mammalian muscle pp. 311-318
complex underlying physics
— stiffness increases with tension
— antagonist co-contraction increases
stiffness (and maybe damping)

Mehta, N. R (1994) A Novel Veriabia icepanical-

Opposing Actuators at a Joint

Cillkg
Assume
— constant moment arms . 0 TF
—linear force-length relation m‘\”

 (grossly) simplified model of
antagonist muscles about a
joint

S —70—TF
Vi,

Cillky
f: force; I:length; k: actuator stiffness )
q: joint angle; t: torque; K: joint stiffness o, = k(1 ~1,0) - 1k, (1, +1,0)

subscripts: g: agonist; n: antagonist, o: virtual
e ° 1= ko —rk b )~k + 17k b

Equivalent behavior:
Opposing torques subtract t=K(q, —q)
o
Opposing impedances add
pposing impedances ad a0 = kg, ~ 1k L)
Joint stiffness positive if actuator ) CK
stiffness positive K (r k, +1, 2k )

. '
40iS¢ —/ﬂ—qr




Snag: Configuration-Dependent Moment Arms

+ Connection of linear actuators « Joint stiffness, K:

usually makes moment arm — Second term always positive
vary with configuration — First term may be negative
1, =1,(a) o
ar,
_ % 2 2
c al, /3q=1,(q)<0 Kf{afg+£fn]+(rgkg+r,,kn)

£, =kl ~1,(a)

.
18— 0— 1< MTF

This is the “Tent-pole” Effect

« Consequences of configuration-
dependent moment arms:

« Opposing “ideal” (zero-impedance)
tension actuators

agonist antagonist

— agonist moment grows with angle,
antagonist moment declines
always unstable

«  Constant-stiffness actuators

— stable only for limited tension
+ Take-home messages:

Kinematics matters

*  Mammalian muscle:
— stiffness is proportional to tension X L
~ “Kinematic” stiffness may

— good approximation of complex
& PP P dominate

behavior
— can be stable for all tension + Impedance matters
—  Zero output impedance may be
highly undesirable

Example: Integral-Action Motion Controller

*  System: (ms® +bs+k)x=cu-f
~ Mass restrained by linear spring & X _ c
damper, driven by control actuator & U ms’tbstk
external force

« Controller: u= §(r ~x)
—  Integral of trajectory error N
3 2
«  System + controller: (ms” +bs” +ks+cg)x=cgr-sf
X cg

r ms’+bs’+ks+cg
s: Laplace variable
« Isolated stability: x: displacement variable
. . bk f: external force variable
— Stability requires upper bound on —>g u: control input variable
controller gain cm r: reference input variable
m: mass constant
b: damping constant
k: stiffess constant
c: actuator force constant
g controller gain constant

a Cilrkg
NG —_ :
W More typical: - 3
LiS—0—1—MIF change e on S 0—MIF_,
ral the transformers 1/r 1—
Cilke Iy =/1,,(q) | 70— MTF
al,/dq=r,(q)>0 " Uy
i @@ e L,
o oy of o i
B e %
éq  0oq oq  0oq
Contact and Coupled Instability
* A GENERAL Problem:
— Contact and interaction with objects couples their dynamics into the
manipulator control system
— This change may cause instability
« Example:
— integral-action motion controller
— coupling to more mass evokes instability
— Impedance control affords a solution:
* Make the manipulator impedance behave like a passive physical
system
Hogan, N. (1988) On the Stability of Manipulators Performing Contact
Tasks, IEEE Journal of Robotics and Automation, 4: 677-686.
Example (continued)
+ Object mass: f= mesz X m,; object mass constant
«  Coupled system: [(m+m,)s’ +bs + ks +cg] x = cgr
0« 000
r o (m+m,)s’ +bs” +ks+cg
*  Coupled stability: bk >cg(m+m,)

*  Choose any positive controller gain bk

that will ensure isolated stability: cm >
+  That controlled system is N bk
destabilized by coupling to a me cg m

sufficiently large mass

Problem & Approach

* Problem:

— Find conditions to avoid instability due to contact & interaction

« Approach:

Describe the manipulator and its controller as an equivalent physical
system
— Find an (equivalent) physical behavior that will avoid contact/coupled
instability
+ Use our knowledge of physical system behavior and how it is
constrained
— Design the controller to impose that desired interaction-port behavior




General Object Dynamics

¢ Assume: L(qc»‘ic):E;(qc’Qc)*Ep(‘lc)
~ Lagrangian dynamics d(eL) oL )
— Passive a[@qe ’aqe =P, -D(q..4.)

— Neutrally stable in isolation

. =0L/04, =0F; fod,

+ Legendre transform: . E,(pe,q.) = P'de — E;(qeq
— Kinetic co-energy to kinetic . .
energy H,(p..q.) = Pide — L(qc.4.)
— Lagrangian form to Hamiltonian .
fane 4 =0H, /op,

P =—0H,/0q. ~D, +P,
* Hamiltonian = total system energy q;: (generalized) coordinates

L: Lagrangian
*: kinetic co-energy
2
H.(p..q.)=E;(pe-q.)+E, (q.) - potental energy
D,: dissipative (generalized) forces
P,: exogenous (generalized) forces

H,: Hamiltonian

Sir William Rowan Hamilton

«  William Rowan Hamilton
— Born 1805, Dublin, Ireland
— Knighted 1835
First Foreign Associate elected to
U.S. National Academy of Sciences
— Died 1865
* Accomplishments
— Optics
— Dynamics
Quaternions
— Linear operators
Graph theory
— ...and more

— http://www.maths.tcd.ie/pub/
HistMath/People/Hamilton/

Aside: some Irishmen of note ©

« Bishop George Berkeley (if a tree falls in the forest ...)
* Robert Boyle (Boyle’s law ...)

« John Boyd Dunlop

* George Francis Fitzgerald (Lorentz-Fitzgerald contraction)
« William Rowan Hamilton

« William Thomson (Lord Kelvin)

+ Joseph Larmor

« Charles Parsons

* Osborne Reynolds

*  George Gabriel Stokes

« William Sealy Gossett (Student of the t-test)

« Frank Wilcoxon (Rank-sum test)

Passivity

« Basic idea: system cannot supply power indefinitely
— Many alternative definitions, the best are energy-based

+ Wyatt et al. (1981) Wyatt, I L., Chua, L. O., Gannett, J. W
. X Goknar, 1. C.and Green, D.N. (1981)
« Passive: total system energy is lower-bounded Energy Concepts in the State-Space Theory

of Nonlinear n-Ports: Part 1 — Passiviy.

— More precisely, available energy is lower-bounded  EFE Trnsicions on Circits i Sysems,
- . Vol. CAS-28, No. 1, pp. 48-61.
« Power flux may be positive or negative
« Convention: power positive in
— Power in (positive)—no limit
Power out (negative)—only until stored energy exhausted
* You can store as much energy as you want but you can withdraw only
what was initially stored (a finite amount)
« Passivity # stability
Example:

« Interaction between similarly charged beads, one fixed, one free to
move on a wire

Stability

« Stability:
In the sense of convergence to equilibrium
« Use Lyapunov’s second method
— A generalization of energy-based analysis
— Lyapunov function: positive-definite non-decreasing state function
— Sufficient condition for asymptotic stability: Negative semi-definitive rate
of change of Lyapunov function
« For physical systems total energy may be a useful candidate Lyapunov
function
— Equilibria are at an energy minima
— Dissipation = energy reduction = convergence to equilibrium
— Hamiltonian form describes dynamics in terms of total energy

Steady State & Equilibrium

«  Steady state: 4, =0=0H,/dp, =0E, /dp,
~ Kinetic energy is a positive-definite  0E, /op, =0=>p, =0
non-decreasing function of
generalized momentum
+  Assume: p.=0=-0H,/0q.~D +P,
~ Dissipative (intemal) forces vanish — Assume D, (0,q,)=0
in steady-state ¢

+ Rules out static (Coulomb) Isolated = P, =0

friction oH, _ OB 4 9E,
— Potential energy is a positive- oq.| , oa.| _, oa,
definite non-decreasing function of Pe” Pe”
generalized displacement OE, . 0H - %k,
« Steady-state is a unique .|, Voq.| _, oq,

equilibrium configuration oE./a 0 0
. P =0= =
« Steady state is equilibrium at the "/ e e

origin of the state space {p..q.}




Notation

Represent partial derivatives using H JoH

subscripts N
e

H, is a scalar

_ e

—  the Hamiltonian state functi -
amiltonian state function *~ ap,

H,, is a vector
— Partial derivatives of the Hamiltonian

i —H .
w.r.t. each element of q, 9e EP(pe qe)

H,, is a vector P = _Heq(pe.qe)_De(pe,qe)+Pe
— Partial derivatives of the Hamiltonian
w.r.t. cach clement of p,

Isolated Stability

«  Use the Hamiltonian as a Lyapunov

function
— Positive-definite non-decreasing
function of state
— Rate of change of stored energy =
power in — power dissipated

« Sufficient condition for asymptotic

stability:
- ative generalized forces are a
positive-definite function of
generalized momentum
Dissipation may vanish if p, =0
and system is not at equilibrium
But p, = 0 does not describe any
system trajectory
LaSalle-Lefshetz theorem
— Energy decreases on all non-
equilibrium system trajectories

dH, /dt=H,d, + Hyb,

dH, /dt = H' H,, + H,,(-H, - D, +P,)
dH, /dt =P, ~q.D,

Isolated= P, =0

~.dH,/dt=—q.D,
q.D, >0=dH /dt<0 Vp =0

Physical System Interaction

Interaction of general dynamic + Interaction of physical systems
systems — Ifu; and y; are power conjugates

— Many possibilities: cascade ~  G; are impedances or admittances

parallel, feedback... Connection must be power-
. ¥1=Gy(s)uy continuous:
« Two linear systems: .
¥, =G, (s)u, « Power into coupled system
must equal net power into
+ Cascade coupling Y3=Y2 component systems
equations:
q U=y U3y; =y, Uy,
u =u .
e «  Physical systems cannot
« Combination: ¥3 =G (s)uy be cascade connected at

Gs(s)=G,(5)G,(5) an interaction port
Not power-continuous

Yalz # Youp + YUy

Parallel & Feedback Connections

* Power continuity

« Parallel connection equations
*  Power balance
—OK

« Feedback connection equations
«  Power balance
—OK

Y3z = youp + Y1ty

YUy =3y u By

Y3=Y1 =y
U =u3;—Y,

Uy =Usys = Yoy

Interaction Port

Assume coupling occurs at a set of
points on the object X,
— Let this define an interaction port
~ X_is as a function of generalized ~ X, = Lc(qc)
coordinates q,

~ Generalized velocity determines V. =J.(q.)d. This ensures

port velocity power
— Port force determines generalized P, =J¢(q, )F, continuity
force

These relations are always well-
defined
— Guaranteed by the definition of
generalized coordinates

Simple Impedance

*  Target (ideal) behavior of manipulator
—  Elastic and viscous behavior
«  In Hamiltonian form:
~ Hamiltonian = potential energy
— Assume V, = 0 for stability analysis
~ Isolated: V,= 0 or F,= 0
Sufficient condition for isolated
asymptotic stability:

F,=K(X,-X,)+B(V,)

b, =H,(q,)+B(V,) ®©.=X,-X,
aQ,=V,-V, H,(q,)=[K(a,)dq,
F,=p,

V, =V, =0=q, = constant = F, = constant
~dH, /dt=H},q, =-B'q,

F,=0=H, =-

B'4,>0 VV,#0

+  Unconstrained mass in Hamiltonian
form
—  Hamiltonian = kinetic energy
— Arbitrarily small mass

+  Couple these with common velocity

4. =Hy(p.) H.(p,)=1pMp,
p.=F,
Ve=4.

V.=V,
FV,+F\V,=0




* Hamiltonian form

Mass Coupled to Simple Impedance

H,(p..q,)=H(p.)+H,(a,)
- Total nergy = sum of components =, (q,)- B{H,(p,)
a,=Hy(p.)

« Assume positive-definite, non-

« Rate of change of Hamiltonian:

decreasing potential energy
~  Equilibrium at (p,,q,) = (0,0)

dH,/dt=H b, +Hi,d,

General Object Coupled to Simple Impedance

Total Hamiltonian (energy) is sum  H,(p,.q.)=H.(p..q.)+ H,(q,)
of components H,(p.4.) = By (perae )+ By(ae)+ H, (L. (g.) - X,)
Assume
Both systems at equilibrium
— Interaction port positions coincide
at coupling " M H M i
Total energy is a positive-definite, dH fdt = Hood Ho, + HoHoy —Ho .,
non-decreasing state function

Rate of change of energy:

I g gt
~H.,D,-H,JH, -H,J'B

epe

dH,/dt=-q.D, - ;B

* The previous conditions sufficient for stability of
— Object in isolation
—  Simple impedance coupled to arbitrarily small mass
+ ...ensure global asymptotic coupled stability
— Energy decreases on all non-equilibrium state trajectories
— True for objects of arbitrary dynamic order

dH,/dt=-H},H, ~HB+H\H, = -4.B
*  Sufficient condition for asymptotic 'B>0 vp, =0
stability
— And because mass is
unconstrained, stability is global
Simple Impedance Controller Implementation
+  Robot model: q - Hyy = 3Pl (@ o

— Inertial mechanism, statically
balanced (or zero gravity), effort-
controlled actuators

t
mg = D + Py + I Fy

Vin =Jilln

+ Hamiltonian = kinetic energy X =Ly ()

+  Controller:

P, =-J. {K(L, -X,)-B(J,q
— Transform simple impedance to 2 = K (L (00) = X,) - B )}

manipulator configuration space

. 4, =H,
Controller coupled to robot: In =Hep
. i ¢
—  Same structure as a physical P =—He =Dy —J0B+I,Fy
system with Hamiltonian H, Vo =0l q,,; generalized coordinates.
_ (configuration variables)
H,=H,+H, X, =L,(q,) P generalized momenta

H,,: Hamiltonian
I inertia

D,,: dissipative (generalized) forces

P, actuator (generalized) forces

X,..V,..F,: interaction port position,
velocity, force

L, kinematic equations, Jacobian

Simple Impedance Controller Isolated Stability

Rate of change of Hamiltonian: dH, /dt=HHg, —HH —H, D,
Energy Qecreas_es on _all non- ~HJ,B+HLJLF,
equilibrium trajectories if A /dt = —4,D, ~ VB-+ VLF,

System is isolated F, =0
Dissipative forces are positive-

definite i S 0.VIB>0 Vp, %0

F, =0= dH,/dt=-q'D, - VB

Minimum energy is at q, =0,X,, =X,
— But this may not define a unique
manipulator configuration N X
Hamiltonian is a positive-definite ~ Non-singular Jacobian
non-decreasing function of q, but +  Then
usually not of configuration g,
Interaction-port impedance may not

*  Assume:
Non-redundant mechanism

~ Hamiltonian is positive-definite &
non-decreasing in a region about

control internal degrees of freedom -L'(X,)
U o
Could add terms to controller but . P,
for simplicity... « Local asymptotic stability

dH, /dt = HiH,, + HY (CH D +JUE,)  dH, Jdt=-a'D, + GUIIF, g5, (D,, + J4B)+ aL I F,

+

Simple Impedance Controller Coupled Stability

Coupling kinematics 4,=4,(q,.9.)
— Coupling relates q,, to q, but no
need to solve explicitly

— Total Hamiltonian (energy) is sum  H, = H, (p,.q,)+ H,(p,,.4,,)

of components
Rate of change of Hamiltonian

H{Ho, + M (- Hoy =Dy ~JLB+ILF, ) dH,[dt=—4{D, + VF.~4,D,, - VB + ViE,
Coupling cannot generate power ViF, +V,F, =0
.dH, /dt =D, ~4.,D,, ~ViB
*  The previous conditions sufficient for stability of
— Object in isolation
— Simple impedance controlled robot
« ...ensure local asymptotic coupled stability

Kinematic Errors

Assume controller and interaction  p, =_J' {K(i(‘lm)’ xu), B(Jq,, )}
port kinematics differ
— Controller kinematics maps
configuration to a point X
~ Comesponding potential function  fi,(q,.)= H,(g,)= H, ([(q,)-X,)
is positive-definite, non-decreasing
in a region about §,, =L"'(X,)

X=L(a,)# Lo(@n)

Assume self-consistent controller  5f /aq
kinematics ) aR/dt =V = T(q, .,
— The (erroneous) Jacobian is the
correct derivative of the
(erroneous) kinematics o _uqt
di, /dt = H,

— e.g., contact doesn’t occur where
you planned




Kinematic Errors (continued)

* Hamiltonian of this controller
coupled to the robot

— Hamiltonian state equations

— Rate of change of the Hamiltonian

In isolation

« Previous conditions on D, & B are
sufficient for isolated local
asymptotic stability

Ho(Prst) = Hpp(Po8) + H, (@,)
H(Posdn) = Ho (Pt + H, (E(,)- X,)
4, =H,,

P =—H,—D, ~JH, ~TB+JIF,
dH, /dt=H} JH,, +H},H,

+HYy (-, D, ~T'H, ~T'B+JLF, )
d, /dt=—q},D,, - V'B+J,F,

F, =0=dH /dt=—q;D,-V'B

Remarks

« Interaction stability
— The above results can be extended
+ Neutrally stable objects
* Kinematic constraints
~ no dynamics
« Interface dynamics
— e.g., due to sensors
“Simple” impedance control can
provide a robust solution to the
contact instability problem
« But it depends heavily on
ideal effort-controlled
actuators

*  Structure matters
— Dynamics of physical systems are
constrained in useful ways

« It may be beneficial to impose
physical system structure on a
general dynamic system

— e.g. arobot controller

« That’s the main idea underlying
impedance control

Simple Impedance Controller

= As much design as control

Highly-backdrivable mechanics

= Current-controlled motors

= No or minimal gearing

= Very low friction

= Inertia-dominated dynamics
Specify desired end-point behavior

= Nonlinear spring & damper
Transform to actuator coordinates

= Transformations are guaranteed

well-defined

u  Crude—but effective!
= Doesn't compensate for inertia or
friction but ...
Can operate at “singularities”
Strongly robust coupled stability

1(0)6 + C(8,0) = T er0r + Tintraction

Fipsgaree = K(X, = X)+B(V, - V)

X=L(0)

V=X=(0L/30)) = J(0)o

Tinerzcion = I(0) Fineracion

Taor = I(0) P

Tnaor = () (K(X, ~L(0))+ B(V, ~J(0)o>))

1(0)é>+ C(0,0) = I(0) Firacion +
3(0) (K(X, - L(0))+B(V, - J(0)))

nerscion’ interaction port force
L: mechanism kinematics
hanism Jacobian

wal position

0: generalized coordinates

Insensitivity to Kinematic Errors

«  The same conditions are also
sufficient to ensure local
asymptotic coupled stability

— Coupled system Hamiltonian and

its rate of change:

« Stability properties are insensitive

to kinematic errors

— Provided they are self-consistent

* Note that these results do not
require small kinematic errors

— Could arise when contact occurs at

unexpected locations

— e.g., on the robot links rather than

the end-point

H, =E,(p..a.)+E,(q.)+
Ho (P 0n) + H, (Ca,)- X, )
dH, /dt=-4(D, ~4;,D,, - V'B

Apparent Mechanical Behavior

m  Apparent behavior matters

= —what something feels like where you touch it.
Contact coordinates are usually different from generalized coordinates
= e.g. robot joint angles vs. end-point coordinates

m  Mechanical physics constrains how behavior transforms
Changing coordinates affects physical variables differently
= Position, velocity, force, momentum, (etc.) transform differently
Conjugate variables are uniquely defined in opposite directions
.G N -

contact

uniquely

= Contact forces uniquely define generalized forces

Redundancy doesn’t matter

n -«

T -
= MTF—=—

®

]

= True with more generalized coordinates than contact coordinates
m A consequence of bi-lateral interaction and power continuity

p
F

v
X

Robot-
Mediated
Therapy

and Development, 43(5):605-618,

m Contact and interaction are essential
= More than twice the benefit of conventional therapy alone
m Fewer side effects (joint pain)

habiliat

Hogan, N., Krebs, H.l., Rohrer, B., Palazzolo, J.J., Dipietro, L., Fasoli, S.E., Stein, J., Frontera, W.R., Volpe, B.T., (2006) Motions

or Muscles? Some Behavioral Factors Underlying Robotic Assistance of Motor Recovery. VA Journal of Rel tion Research
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O
Contact Robotics Requires High

Force & Low, Variable Impedance

m Feather-light touch at forces up to and beyond body
weight
High force density (force/mass ratio)

g Low output (driving-point) mechanical impedance

Excoliont]  Direct-Drive
Electromagnetic

m Present Actuator Technologies
Electromagnetic: low force

REGION .
\ density
Abillty to Hydraulic, geared
Render 3 in high intrinsi
Desired electromagnetic: high intrinsic
Impedance impedance
Elect L - - limi -
wiRemote Xomasions . Hydrsulo Compressed-gas: limited by low-

« frequency “parasitic” dynamics
Pneumatic Highly-Geared

Electromagnetic
Poos gmag

»
Force / Mass High

The Appeal of Force Feedback

m Equation of motion:

mX+F, (x,X)=F,+F, X
m Force feedback controller: }_>
F.=G(F, Fa Fe
m Resulting equation of motion: = mo—
mx F (X, %) XXz X% FilxX)
= T

1+G, 1+G, ¢
m Increasing G; reduces apparent inertia, friction

SNAG—Coupled Instability

Coupled Stability via Passivity

m A passive impedance has Z(s) positive real
= Phase of Z(s) lies between +90° and -90° veloaity
System may store, dissipate & return energy—
but cannot be “pumped” to supply power continuously.

= Physical interaction resembles unity negative feedback
Couple two passive systems
= Combined phase lies between +180° and -180°= STABLE
= No constraint on magnitude

= Controller design constraint:
Imposing passive robot impedance guarantees stability when coupled
to all passive objects.
= Arbitrarily complicated collections of springs, masses, dampers,
constraints, etc.

Hogan, N. (1988) On the Stability of Manipulators Performing Contact Tasks,
IEEE Journal of Robotics and Automation, 4: 677-686.

Colgate, J. E. and Hogan, N. (1988) Robust Control of Dynamically Interacting
Systems, International Journal of Control, Vol. 48, No. 1, pp. 65-88.

Force Feedback and Passivity

= Passivity is hard to achieve
= Discrete-time implementation exceeds phase constraint at high frequencies
= High-gain force feedback with resonant dynamics between sensor &
actuator violates passivity

= With force feedback passivity is conservative
= With any resonant dynamics between sensor & actuator, force feedback
inertia reduction by 50% or more is non-passive [Colgate '89]

Severely limits force feedback loop gain

Complementary Stability
m Define a bounded set of environment port operators:
Y() =Y, (5)+W(s)A(s) A, <1

m Definition: A robot represented by Z achieves complementary
stability with the set Y if the coupled system is robustly stable

velocity - force

Stability analysis by the small gain theorem
Additive perturbation structure is not essential

"
Controller Design via
Constrained Optimization

= Prerequisites
Model of robot (with at least one resonance)
Model (or data representation) of environment port admittance
Assumed controller structure with selected variable parameters

= Algorithm
Broglc_j search finds parameter combinations to satisfy complementary
stability
Select best-performing stable controller(s) based on robot impedance
magnitude

11
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Controller Design Example

e ey

= Robot model: F % 4
01 Single-resonance, with force ' ﬂv):‘ “
transducer v d
= Control structure: p(s+2)
o varyp, z, Ky =K srm -
[ Target impedance Z=0 .

= Environment model:

=

= Stability by structured singular value
Performance “cost”: < .
- C =Y logz(jo)|

o
= Parameters based on laboratory robot module, literature on
human arm endpoint dynamics

"

Example Results

Cost C at maximum
stable K. versus p
and z

Region “A” indicates
low-frequency lag
control

Region “B” indicates
high-frequency lead
control

T °
L pole freq, radisec

Example Results (continued)

an

[
T
1
o 314 1
| : !
5 K ]
4 5
£ H i
£ 15 R
3 = ’
f-
E 10 0
10"
al
10 “ - A7 T 5 4
w00 w0t w1t w0¢ 10 [ foo0
freq, radisec

o 10 10°
freq, radisec

Algorithm returns non-obvious controller parameters.

" JEE
Implementation

= Apply control to physical system

Screw-driven robot module

£ 140 N continuous force capacity

1 Up to 20 N Coulomb friction, position
dependent

1 Approximately 6 kg endpoint inertia

1 High-frequency noise in force sensor
precludes high-frequency (lead) control

= Model is linear, robot significantly not
Robust testbed for control approach

" JEEE
Stability

m Contact tests with spring (and plastic block) environments

Increasing Environment Stifiness

i] 2] 3] a5 6 [boklam
PXO[ ++ | +
X[ o [+ |+

- X [s] -+ +
. X o | +
£ | N Controller specified by algorithm X Maximum stftness stabie in impact test
i :

" P Procictod maximum stable sifiness.

Last column indicates behavior coupled to human arm

“-" indicates unwanted vibration

abie mpac

Model-based algorithm results are more conservative
than experiments, less conservative than passivity

'_
Achieved Performance

Performance best tested by “feel”
Static/Coulomb frj

less than 0.3

(66x reduction)

force, N

Inertia reduction:
1.75 kg with K,;:=2000 (3.4x reduction)

oy 1.2 kg with Kdc=3000
015 02 025 03 03s

position, m

Performance and stability are significantly enhanced

—despite differences between model and robot.
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Passivity Robot Impedance Control

= Biologically-inspired approach to interaction control
Controller establishes a relation between force and motion (Hogan,
1980, 1985, ...
Two implementations:
= impedance (force-out-for-motion-in)
like “frequency-dependent” stiffness
= admittance (motion-out-for-force-in)
like “frequency-dependent” inertia
= controlling robot impedance is ideal, controlling robot admittance is
often easier

= A powerful tool for sophisticated
controller design
Nonlinear, Adaptive, Robust
Fundamentally a physical
system concept

=  Passive interactive behavior
guarantees contact stability

Drawback: conservative for
force feedback
= Works well for interaction tasks:
= Automotive assembly (Case westem Reserve University, US)
= Food packaging (Technical University Delft, NL)
= Hazardous material handling (0ak Ridge National Labs, US)
= Automated excavation (University of Sydney, Australia)
= ... and many more

= Reduce conservativeness:
Optimize for interaction with a
limited set of objects
—e.g. humans

Buerger, S.P. and Hogan, N. C Stability and Loop-Shaping for Improved Ht bot Interaction. IEEE Transactions
on Robotics 2007 23:232-244

Human-Robot Cooperation

Biomimetic Artificial Arms

m Application: Motorized artificial arms for amputees
m Goal: Provide more natural function
Most arm amputees are uni-lateral, with an unimpaired arm
= Dexterous artificial hands are a tough technical challenge
No practical solutions are yet available
= Fine-motor tasks are performed with the unimpaired hand
= The prosthetic arm serves the non-dominant role
Support objects, steady them, etc.
Hence skillful control of physical contact is the key to arm
prosthesis function
= Arm-waving is not enough!

= Innovation: A biomimetic arm prosthesis with
Toyota Motor Corporation Vehicle Assembly controllable mechanical Impedance

" BN "
Biomimetic Motorized Prosthetic Dexterity Requires
Interaction Control

m A prosthesis must control two
essential physical interactions:
With the world
= The key to functional tasks
With the natural limbs
= The key to coordination
= Conventional motion control
doesn’t work
Among many reasons, it
requires excessive information
and control precision
= |mpedance control* can mimic
natural arm control

H F— Enables multi-joint
" TWO'_Way |nteract|on_. . coordination and coping with
With the amputee’s intact limb segments difficult mechanical constraints

With objects (s)he manipulates
m Controlling interaction is essential

*Hogan, 1980, 1985 etc. Hogan & Buerger, 2005 ...




F————
“Natural” Impedance Control Details

= Programmable prosthesis “emulator”
= A “flight simulator” for amputation prostheses
= Enables precisely controlled study of alternatives
= Trans-humeral (above-elbow) amputation in these studies
Motorized elbow, cable-operated terminal device
= Conventional two-bladed hook
Command and control interface: EMG from residual biceps & triceps
= Electrodes built into socket over limb residuum
= Optimal EMG magnitude estimation*

= “Natural” Impedance Control mimics natural muscle behavior
Differential muscle contraction determines elbow equilibrium position
= Highly “back-drivable” dynamics allows displacement from equilibrium
= Responsive to external forces or from other body segments
Antagonist co-contraction determines impedance
= Elbow stiffness & damping increase with sum of EMG magnitudes
= Enables stable interaction, load-bearing, force transmission

*Clancy & Hogan 1995, 1997

Enables Functional
Bi-Manual Tasks

= Key features of “natural
impedance control”
Controlled deflection under
load similar to natural elbow
facilitates

= Bi-manual coordination
= Production of useful work

Guaranteed stability during
physical interaction facilitates

= “Carefree” interaction with
other body parts
The other hand, the foot, the
thigh

O
Implications of Natural Impedance
Control for Brain-Machine Interfaces

= Simplifies the human-machine interface
Reduces the precision and channel
capacity required for command and control
= Readily scales to many degrees of freedom
Impedance control is a key feature of
= NASA/GM's Robonaut 2
= Toyota's vehicle assembly
= Kuka/DLR's “lightweight arm”
...and many more
= Easily controls “excess” (redundant) degrees of freedom
Position of the hand and impedance of the joints is sufficient to achieve
smooth coordination*

= Requirement: Sufficiently “back-drivable” hardware is essential

= Next step: Replace EMG with EEG
... or whatever interface has the required capacity

*Mussa-Ivaldi & Hogan 1991

Physical System
Theory

= |s there a general theory of physical
systems?

= Rich history: Maxwell (1873) Firestone (1933)
Trent (1955) ...

= Most comprehensive: Paynter (1961)
= Elaborated by many, notably
Peter Breedveld, U. Twente, Netherlands
= Key concept: Interaction port Ny
= Every distinct way power can be mT Faculty
 defines a port ) . ASME Rufus Oldenburger Medalist
= |dentifying ports enables reticulation
Forming a network of interconnected pieces
= This is what Kron (1936) called diakoptics (Greek for “tearing”)
= Reticulation may proceed until each piece is an idealized element...
= The familiar mass, spring, damper, resistor capacitor inductor, etc
= ...but that's not essential
Network models are not restricted to “lumped-parameter” models

Henry Martyn Paynter

g
Network Physical System Models

= Network models are versatile
The pieces connected may be nonlinear and multivariable
They readily yield state-determined representations
» The basis of (almost) all advanced controller designs % = f (x,t)

m  Network physical system models are highly structured

= Remarkably, a symmetric multi-port connection must be linear
Even though the connected pieces / elements may be nonlinear*

= This has far-reaching consequences
e.g. Tellegen's theorem

= Force-like variables (efforts) and motion-like
variables (flows) occupy orthogonal sub-spaces
Hogan N. Modularity And Causality In
= Completely independent of the network elements Physical System Modeling. Journal Of
Dynamic Systems Measurement And
Control 109: 384-391, 1987.

Paynter HM, and Busch-Vishniac 1J. Wave-
scattering Approaches to Conservation and
ausality. Journal of the Franklin Institute

325: 295-313, 1988,

*Proof:

Network Model Power Ports

= Two real-valued variables quantify power
flow between two subsystems
= Define u to quantify power flow out of A Pyow =U’ UeR P20
Square it to ensure sign-definite power flow
= Define v to quantify power out of B P
Square it to ensure sign-definite power flow B.out
Net power is a difference of squares

Derivation motivated by wave variables butnot  Pret a8 = Paout = Po.out
restricted to wave transmission

These variables define a power port

veR.. P

BLout

>0

=u’-v?

= Power flow may always be expressed as a P =c(u-v)-(u+v)c
product of two real-valued variables s =Cu=v)-u vy
= Force, velocity; voltage, current; effort, flow; etc.
¢ is a domain-dependent scaling constant
= _..but that's not essential

e=c(u-v)

f=(u+v)c

14
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Network Model Connectors

= With only 1-port elements only D_ + _E = }D

two may be connected

= Combining 2-port elements yields + = = I+
another 2-port 1r+1ir ir

Only linear chains terminated by
1-ports may be connected

= 3-port elements are necessary for
general networks

= They are also sufficient
Combinations of 3-port elements
yield

= 4-port elements
= n-port elements

" JE
Three-Port Connectors

= Two vectors of 3 real-valued
variables characterize power flow u=|u, v=|v.
into and out of a 3-port connector

m  Power flows are the squares of the
lengths of these vectors

= The connector equations are an
algebraic relation between these
input and output variables

Power Continuity

= An ideal connector is power-continuous

Power in = power out means the lengths
of u and v must be equal

= The algebraic relation ~ v= f(u)
is equivalent to a rotation operator

= The rotation matrix is orthogonal
Rows (or columns) are
= Orthogonal
= Unit magnitude

v=S(u)u

viv=u'S'Su=u'u

S'S=1

* SN
Physical & Computational
Dynamics Combined

= Controlled system d?/namics emerge from physical
dynamics and signal processing
A central challenge of motor neuroscience:
= How much behavior is due to (bio-)mechanics?
= How much is due to (neural) information processing?

= Need: a general theory of actuators
signal-to-energy interfaces
= with
= Two unambiguously distinct
components

“forward path” dynamics
= Signals influence physical events
Interactive dynamics
= Physical events influence the
response to signals

Video courtesy of Prof. Andy Ruina, Cornell University

Symmetric 3-port Connectors

ab b
= Assume invariance under permutation
exchanging any two ports doesn't matter S=/b a b
b b a
Orthogonality of S yields
two equations for a an b
with only two solutions
a and b must be constant

a(u,u,,u, ) +2b(u,,u,,u, ) =1
bu, U, U, +2a(uy, U, U Jolu, Uy, u,) = 0

= There are only two symmetric, power- au,u,,u,)=1/3
continuous, three-port connectors b(“n“z:“; =-2/3
= Both are linear a(U,,u,,u)=-1/3
Independent of the (non)linearity of the systems
theypconnecl non) Y 4 b(u,,u,u;)=2/3
v, 13 -2/3 -2/37y, v] [-13 23 237y,
v, [=|-2/3 13 -2/3|u, v, [=| 23 13 273 |u,
v,| [-23 -2/3 13 |u, v| [2/3 2/3 -1/3]u,

"
Equivalent Networks

= Equivalent circuits:

= Helmholtz (1853) Thevenin (1883) Heaviside (1925) Mayer (1926) Norton (1926)
Mayer & Norton published in the same month of 1926!

= Two key benefits
Prodigious simplification
= Arbitrarily complex systems: simpler functionally equivalent form
Unambiguously identifiable
= Both components experimentally measurable

m  For linear systems, equivalent networks serve as interface elements
“source” element describes “forward path” dynamics
= Independent of interaction
Equivalent “resistance” describes interactive dynamics
= Independent of forward-path dynamics

15



Nonlinear Equivalent Networks?

= Can equivalent networks be extended to nonlinear systems?

= Don't anticipate a complete correspondence—but linear network topology encourages
optimism

Can nonlinear equivalent networks be defined?
Can their components be identified unambiguously?

m Linear equivalent network: four possible forms, largely interchangeable
Two types of connection
= Common motion (Helmholtz/Thevenin) common effort (Mayer/Norton)
Two operational forms
= Impedance (motion in/force out) admittance (force in/motion out)

= Nonlinear system:
Some forms may not be well-defined
= e.g. mechanical linkages are “naturally” admittances
Unambiguous identification precludes some types

Neuro-Muscular Actuators
1(0)o+C(0,0)= Y7

= Human skeleton i
Inertial mechanics comes with a linear common-motion connection
= Helmholtz/Thevenin network, operational form: admittance

= Human neuro-muscular system
Operational form can’t be admittance
= Non iic force-length cun force at different lengths
Impedance form is compatible with skeletal admittance

= Which network type?
The “obvious” choice: a “force source” modified by interactive dynamics
= common-motion (Helmholtz/Thevenin) network

This assumption is ubiquitous in computational motor neuroscience
= The forward path specifies nominal muscular forces

= Snag: Interactive dynamics cannot be identified unambiguously

ldentifying Equivalent Networks

= Observation only from the contact point (interaction port)
To identify the source term, enforce zero power exchange
= Zero motion—i.e. immobilize the (neuro-muscular) actuator
Problem: steady-state force due to interactive dynamics
= If zero, can't stabilize the skeleton
= Ifnon-zero, can't be distinguished from “source” force

= Alternative: a “motion source” modified by interactive dynamics
= Common-effort (Mayer/Norton) network
The forward path specifies a nominal trajectory and/or posture
Interactive dynamics operate on deviations from nominal motion

= |dentification:
If the interactive dynamics are locally observable, Identically zero
force identifies the motion source—unambiguously

= The biological actuator requires a Mayer/Norton network

" JEE
Research Required

= The idea of “putting physics in control” is not at all new
But a practical, systematic approach has not been fully articulated

= A general physical system theory remains elusive
Establishing a solid mathematical foundation is important

Differential geometry seems promising
= e.g. ongoing work on a port t

But there’s a tradeoff:
Mathematical rigor vs. intuitive comprehension?

A tough challenge!
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