

Human legs / Robot legs Bram Vanderborght – Vrije Universiteit Brussel

Impedance in robots

□ Active Compliance

- Compliant behaviour by means of software control
- □ Constant Passive Compliance
 - Passive element (eg spring is introduced)
 - One motor
- □ Adaptable Passive Compliance
 - Stiffness can be changed
 - Two motors

Categorization of adaptable compliant actuators

- **Equilibrium Controlled Stiffness**
- □ Antagonistically Controlled Stiffness
- □ Structure Controlled Stiffness
- □ Mechanically Controlled Stiffness

Antagonistically Controlled Stiffness

•Linear spring:

$$F = -\kappa (x - x_{0A}) + \kappa (x_{0B} - x) = -2\kappa x + \kappa (x_{0A} - x_{0B})$$
$$k = -\frac{dF}{dx} = 2\kappa$$

•Quadratic spring:

$$F = -\kappa (x - x_{0A})^{2} + \kappa (x_{0B} - x)^{2} = 2\kappa x (x_{0A} - x_{0B}) + \kappa (x_{0B}^{2} - x_{0A}^{2})$$
$$k = -\frac{dF}{dx} = 2\kappa (x_{0B} - x_{0A})$$

S. A. Migliore et al.

VSA - Tonietti et al.

AMASC - Hurst et al

Antagonistic setup of two pneumatic muscles

 p_2

Structure Controlled Stiffness

Bending of a leaf spring:

$$M = \left(\frac{E.I}{L}\right).\theta$$

EI/L = the bending stiffness

Hollander et al.

Mechanically Controlled Stiffness

1 motors controls position 1 motor controls stiffness Spindle Spring Base Slider Stiffer Connection to Preset Linear Bearing **Translational** Roller Slider Deflection Cam Rollers Cam Disk VS-joint Maccepa (Fixed to Joint Wolf et Hirzinger Van Ham et al. Circular Spline) Deflection Axis of Rotation

Speed of robots

Copy nature?

Walking: inverted pendulum

- \Box No aerial phase
- □ Straight supporting leg
- Potential energy and kinetic energy out of phase
- Energy storage by interchange of gravitational potential energy and kinetic energy

Wisse

Active walkers

Passive walkers

powered passive walkers

Active walkers with explotation of natural dynamics

Optimal

Controlled passive walking

From walking to running

- $\Box \mathbf{F}_{centrifugal} = \mathbf{mv}^2 / \mathbf{L} < \mathbf{F}_{gravitational} = \mathbf{mg}$
- □ v<sqrt(gL) (g=10m/s², L=0.9m: v=3m/s)
- □ Race walker: 4m/s
- □ Froude number=v²/gL has to stay below 1 for walking
 - \rightarrow normally transition at Froude=0.4-0.5

Running: bouncing ball

- \Box Aerial phase
- Bent legs store energy in springs
- Potential energy and kinetic energy in phase
- Energy storage by elastic properties of the joints (Achilles tendon)

Use of springs

these basic mechanisms of energy conservation have been demonstrated in a wide variety of animals that differ in leg number, posture, body shape, body mass, or skeleton type

Oscar Pistorius

Spring-mass model for walking

Characteristic ground reaction force (GRF) patterns observed during the stance phase in walking and running

16

Ankle prostheses

Traditional prosthesis: walk with closed ski boots

Active prostheses

Sugar: 77W instead of 250W

Herr: 150W instead of 250W 20J/step 18

Passive prostheses

Vrije

Universiteit Brussel Energy-recycling artificial foot Human Biomechanics and Controls Lab University of Michigan

Supporting Movie S1 Collins and Kuo (2010) *PLoS ONE* playback at 6% of actual speed

Knee model

Rheo knee Herr

Energy harvester Kuo

Gait rehabilitation

KNEXO: Unimpaired, Assisted

DIFFERENT CONTROLLER > ASSISTIVE SETTINGS

DIFFERENT MODES

GUIDELINES

au_{LIM}

- ENSURE "NORMAL" TRACKING RANGE
- LIMIT RESTORING TORQUE AVOID HIGH SPEEDS AND **OVERSHOOTS**

λ

APPROPRIATELY SLOW

0.1s

- ENSURE GAIT CONTINUITY
- TORQUE LIMITATION AROUND au_{FF} WEIGHT BEARING SUPPORT

KNEXO: MS Patient, Assisted

GAIT ASSESSMENT STANCE: KNEE HYPEREXTENSION SWING: UNSMOOTH KNEE FLEX/EXT

L/R ASYMMETRY

PATIENT SPECIFIC TUNING DIFFERENT TARGET TRAJECTORIES

DIFFERENT CONTROLLER SETTINGS

Conclusions

- □ Compliance important from biological evidence
- □ Influence of compliance in human locomotion is not yet fully understood
- □ Current robots, prostheses and ortheses do not yet fully exploit the possibilities of variable compliance
- □ Synergy between biology-engineering

24

References

- □ **Review compliant actuators**: Review of Actuators with Passive Adjustable Compliance / Controllable Stiffness for Robotic Applications Authors: VAN HAM Ronald, SUGAR Thomas, VANDERBORGHT Bram, HOLLANDER Kevin, LEFEBER Dirk Reference: IEEE Robotics & Automation Magazine, nr 3, vol.16, pp.81 94, 2009
- Safety in manipulators: Proxy-Based Sliding Mode Control of a Planar Pneumatic Manipulator Authors: VAN DAMME Michael, VANDERBORGHT Bram, VERRELST Björn, VAN HAM Ronald, DAERDEN Frank, LEFEBER Dirk Reference: International Journal of Robotics Research, Vol. 28, No. 2, 266-284 (2009)
- **Knexo**: Pleated pneumatic artificial muscle based actuator system as a torque source for compliant lower limb exoskeletons Authors: P. Beyl, M. Van Damme, R. Van Ham, B. Vanderborght and D. Lefeber Reference: Robotica
- Lucy: Overview of the Lucy-project: Dynamic stabilisation of a biped powered by pneumatic artificial muscles Authors: *VANDERBORGHT Bram*, VAN HAM Ronald, VERRELST Bjorn, VAN DAMME Michael, LEFEBER Dirk Reference: Advanced Robotics, Volume 22, Issue 6-7, Number 10, 2008, pp. 1027-1051(25)
- Controlling stiffness for energy efficiency: Development of a compliance controller to reduce energy consumption for bipedal robots Authors: *VANDERBORGHT Bram*, VERRELST Bjorn, VAN HAM Ronald, VAN DAMME Michael, BEYL Pieter, LEFEBER Dirk Reference: Autonomous Robots, Volume 24, May 2008, No. 4, pp. 419-434
- MACCEPA: MACCEPA, the Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator: Design and Implementation in a Biped Robot Authors: VAN HAM Ronald, VANDERBORGHT Bram, VAN DAMME Michaël, VERRELST Björn, LEFEBER Dirk Reference: Robotics and Autonomous Systems, Volume 55, October 2007, No. 10, pp. 761-768

25