

Sethu Vijayakumar

Professor of Robotics, University of Edinburgh, UK Microsoft Research – Royal Academy of Engineering Chair in Robotics

Variable Impedance Policies Optimize or Imitate?

Planning with Redundancy

Redundancy at various levels:

- Task -> End Effector Trajectory (Min. Jerk, Min. Energy etc.)
- End Effector -> Joint Angles (Inverse Kinematics)
- Joint Angles -> Joint Torques (Inverse Dynamics)
- Joint Torques -> Joint Stiffness (Variable Impedance)

Variable Stiffness Actuation

Basic ingredients

Variable Stiffness Actuator

MACCEPA: Van Ham et.al, 2007

DLR Hand Arm System: Grebenstein et.al., 2011

... and an optimization framework

Plan Optimization and Control

Optimal Feedback Control

Given:

- Start & end states,
- fixed-time horizon T and
- system dynamics $d\mathbf{x} = \mathbf{f}(\mathbf{x},\mathbf{u})dt + \mathbf{F}(\mathbf{x},\mathbf{u})d\boldsymbol{\omega}$

And assuming some cost function: How the system reacts (Δx) to forces (u)

$$v^{\pi}(t, \mathbf{x}) \equiv E \begin{bmatrix} h(\mathbf{x}(T)) + \int_{t}^{T} l(\tau, \mathbf{x}(\tau), \pi(\tau, \mathbf{x}(\tau))) d\tau \\ \vdots \\ Final Cost \\ Running Cost \end{bmatrix}$$

Apply Statistical Optimization techniques to find optimal control commands

Aim: find control law π^* that minimizes v^{π} (0, x_0).

Choice of Optimization Methods

- Analytic Methods
 - Linear Quadratic Regulator (LQR)
 - Linear Quadratic Gaussian (LQG)
- Local Optimization Methods
 - iLQG, iLDP
- Dynamic Programming (DDP)
- Inference based methods
 - AICO, PI², ...

What does an OFC generate?

OFC law

$$\mathbf{u}_{k}^{plant} = \bar{\mathbf{u}}_{k} + \delta \mathbf{u}_{k}$$
$$\delta \mathbf{u}_{k} = \mathbf{L}_{k} \cdot (\mathbf{x}_{k} - \bar{\mathbf{x}}_{k})$$

Variable Impedance Policies -- through Stochastic Optimization

Assume knowledge of **actuator dynamics** Assume knowledge of **cost** being optimized

- Explosive Movement Tasks (e.g., throwing)
- Periodic Movement Tasks and Temporal Optimization (e.g. walking, brachiation)
- Learning dynamics (OFC-LD)

Variable Impedance Policies -- through Stochastic Optimization

Assume knowledge of **actuator dynamics** Assume knowledge of **cost** being optimized

- Explosive Movement Tasks (e.g., throwing)
- Periodic Movement Tasks and Temporal Optimization (e.g. walking, brachiation)
- Learning dynamics (OFC-LD)

Highly dynamic tasks, explosive movements

The two main ingredients: Compliant Actuators To

VARIABLE JOINT STIFFNESS

MACCEPA: Van Ham et.al, 2007

DLR Hand Arm System: Grebenstein et.al., 2011

 $\tau = \tau(\mathbf{q}, \mathbf{u})$ $\mathbf{K} = \mathbf{K}(\mathbf{q}, \mathbf{u})$

Torque/Stiffness Opt.

- Model of the system dynamics:
 - $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \quad \mathbf{u} \in \Omega$
- Control objective:

$$J = -d + w \frac{1}{2} \int_{0}^{T} \left\| \mathbf{F} \right\|^{2} dt \rightarrow \min.$$

Optimal control solution:

$$\mathbf{u}(t,\mathbf{x}) = \mathbf{u}^*(t) + \mathbf{L}^*(t)(\mathbf{x} - \mathbf{x}^*(t))$$

iLQG: Li & Todorov 2007 DDP: Jacobson & Mayne 1970

Benefits of Stiffness Modulation:

Quantitative evidence of improved task performance (distance thrown) with temporal **stiffness modulation** as opposed to **fixed** (optimal) stiffness control

Exploiting Natural Dynamics:

a) optimization suggests power amplification through pumping energy
 b) benefit of passive stiffness vs. active stiffness control –

 $J = -d + w \frac{1}{2} \int_{0}^{T} \|\mathbf{F}\|^{2} dt$

Distance thrown Optimal ball throwing

0.6

Behaviour Optimization:

Simultaneous stiffness and torque optimization of a VIA actuator that reflects strategies used in human explosive movement tasks:

- a) performance-effort trade-off
- b) qualitatively similar stiffness pattern -
- c) strategy change in task execution

Variable Impedance Policies -- through Stochastic Optimization

Assume knowledge of **actuator dynamics** Assume knowledge of **cost** being optimized

- Explosive Movement Tasks (e.g., throwing)
- Periodic Movement Tasks and Temporal Optimization (e.g. walking, brachiation)
- Learning dynamics (OFC-LD)

Periodic Movement Control: Issues

Representation

• what is a suitable representation of periodic movement (trajectories, goal)?

Choice of cost function

• how to design a cost function for periodic movement?

Exploitation of natural dynamics

- how to exploit resonance for energy efficient control?
 - optimize frequency (temporal aspect)
 - stiffness tuning

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

Cost Function for Periodic Movements

Optimization criterion

 $J = \Phi(\mathbf{x}_0, \mathbf{x}_T) + \int_0^T r(\mathbf{x}, \mathbf{u}, t) dt$

Terminal cost

• ensures periodicity of the trajectory

$$\Phi(\mathbf{x}_0, \mathbf{x}_T) = (\mathbf{x}_T - \mathbf{x}_0)^T \mathbf{Q}_T (\mathbf{x}_T - \mathbf{x}_0)$$

Running cost

• tracking performance and control cost

$$r(\mathbf{x}, \mathbf{u}, t) = (\mathbf{x} - \mathbf{x}_{ref})^T \mathbf{Q} (\mathbf{x} - \mathbf{x}_{ref}) + \mathbf{u}^T \mathbf{R} \mathbf{u}$$
$$\mathbf{x} = [y, \dot{y}]^T$$
$$y_{ref}(t) = a_0 + \sum_{n=1}^N (a_n \cos n\omega t + b_n \sin n\omega t)$$

Another View of Cost Function

Running cost: tracking performance and control cost

$$r(\mathbf{x}, \mathbf{u}, t) = (\mathbf{x} - \mathbf{x}_{ref})^T \mathbf{Q}(\mathbf{x} - \mathbf{x}_{ref}) + \mathbf{u}^T \mathbf{R} \mathbf{u}$$

Augmented plant dynamics with Fourier series based DMPs

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) & (1) \\ y = r \ \boldsymbol{\psi}^{T}(\phi)\boldsymbol{\theta} + y_{offset} & (2) \\ \dot{\phi} = \omega & (3) \\ \mathbf{z} = \mathbf{x} - \mathbf{y}, \text{ where } \mathbf{y} = [y, \ \dot{y}] & (4) \end{cases}$$

• Reformulated running cost

$$r(\mathbf{z}, \mathbf{u}) = \mathbf{z}^T \mathbf{Q} \mathbf{z} + \mathbf{u}^T \mathbf{R} \mathbf{u}$$

• Find control \mathbf{u} and parameter ω such that plant dynamics (1) should behave like (2) and (3) while min. control cost

Temporal Optimization

How do we find the right **temporal duration** in which to optimize a movement ?

Solutions:

- Fix temporal parameters
 - ... not optimal
- Time stationary cost
 - ... cannot deal with sequential tasks, e.g. via points
- Chain 'first exit time' controllers
 - ... Linear duration cost, not optimal
- Canonical Time Formulation

Canonical Time Formulation

Dynamics: $d\mathbf{x} = f(\mathbf{x}, \mathbf{u})\beta dt + g(\mathbf{x}, \mathbf{u})d\eta$

Cost: $J = \sum_{i=1}^{N} \Phi_i(\mathbf{x}(t_i)) + \int_0^{t_N} \left[r(\mathbf{x}(t)) + \mathbf{u}(t)^T \mathbf{H} \mathbf{u}(t) \right] dt$

n.b. *t*_i represent *real* time

Introduce change of time

$$t' = \int_0^t \frac{1}{\beta(s)} ds$$

Canonical Time Formulation

Dynamics: $d\mathbf{x} = f(\mathbf{x}, \mathbf{u})\boldsymbol{\beta}dt' + g(\mathbf{x}, \mathbf{u})d\eta'$

$$\begin{aligned} \mathbf{Cost:} \ J &= \sum_{i=1}^{N} \Phi_i \left(\mathbf{x}(\tau^{-1}(t'_i)) \right) + \int_0^{\tau^{-1}(t'_N)} \left[r\left(\mathbf{x}(t) \right) + \mathbf{u}(t)^T \mathbf{H} \mathbf{u}(t) \right] dt \\ &+ \int_0^{t'_N} c(\beta(s)) ds \end{aligned}$$

n.b. t' now represents canonical time

Introduce change of time
$$t' = \int_0^t \frac{1}{\beta(s)} ds$$

Konrad Rawlik, Marc Toussaint and Sethu Vijayakumar, An Approximate Inference Approach to Temporal Optimization in Optimal Control, *Proc. Advances in Neural Information Processing Systems (NIPS '10)*, Vancouver, Canada (2010).

AICO-T algorithm

- Use approximate inference methods
- EM algorithm
 - **E-Step:** solve OC problem with fixed β
 - **M-Step:** optimise β with fixed controls

Konrad Rawlik, Marc Toussaint and Sethu Vijayakumar, An Approximate Inference Approach to Temporal Optimization in Optimal Control, *Proc. Advances in Neural Information Processing Systems (NIPS '10)*, Vancouver, Canada (2010).

Spatiotemporal Optimization

• 2 DoF arm, reaching task

• 2 DoF arm, via point task

Temporal Optimization in Brachiation

- Optimize the joint torque and movement duration
- Cost function

$$J = (\mathbf{y} - \mathbf{y}^*)^T \mathbf{P}_T (\mathbf{y} - \mathbf{y}^*) + \int_0^T R u^2 dt$$

$$\mathbf{y} = [\mathbf{r}, \dot{\mathbf{r}}]^T \in \mathbb{R}^4 \quad \mathbf{r}: \text{gripper position}$$

$$u = \tau$$

Elbow actuator

• Time-scaling

$$t' = \int_0^t \frac{1}{\beta(s)} ds$$

t' : canonical time

ipab

У

Institute of Perception, Action and Behaviour

Gripper

• Find optimal \mathbf{u}^* using iLQG and update β in turn until convergence [Rawlik, Toussaint and Vijayakumar, 2010]

Temporal Optimization of Swing Locomotion

ipab

Institute of Perception, Action and Behaviour

•vary T=1.3~1.55 (sec) and compare required joint torque •significant reduction of joint torque with $T_{opt} = 1.421$

Optimized Brachiating Manoeuvre

Swing-up and locomotion

Variable Impedance Policies -- through Stochastic Optimization

Assume knowledge of actuator dynamics Assume knowledge of **cost** being optimized

- Explosive Movement Tasks (e.g., throwing)
- Periodic Movement Tasks and Temporal Optimization (e.g. walking, brachiation)
- Learning dynamics (OFC-LD)

Dynamics Learning with LWPR

Locally Weighted Projection Regression (LWPR) for dynamics learning (Vijayakumar et al., 2005).

$$d\mathbf{x} = \mathbf{f}(\mathbf{x},\mathbf{u})dt + \mathbf{F}(\mathbf{x},\mathbf{u})d\boldsymbol{\omega} \implies d\mathbf{x} = \widetilde{\mathbf{f}}(\mathbf{x},\mathbf{u})dt + \phi(\mathbf{x},\mathbf{u})d\boldsymbol{\omega}$$

S. Vijayakumar, A. D'Souza and S. Schaal, Online Learning in High Dimensions, Neural Computation, vol. 17 (2005)

OFC with Learned Dynamics (OFC-LD)

- OFC-LD uses LWPR learned dynamics for optimization (Mitrovic et al., 2010a)
- Key ingredient: Ability to learn both the dynamics and the associated uncertainty (Mitrovic et al., 2010b)

Djordje Mitrovic, Stefan Klanke and Sethu Vijayakumar, Adaptive Optimal Feedback Control with Learned Internal Dynamics Models, *From Motor Learning to Interaction Learning in Robots*, SCI 264, pp. 65-84, Springer-Verlag (2010).

OFC-LD: Advantages

Reproduces the "trial-to-trial" variability in the uncontrolled manifold, i.e., exhibits the **minimum intervention principle** that is characteristic of human motor control.

Scaling OFC to Hardware

High accuracy while remaining compliant and energy efficient.

Optimal Feedback Control for Anthropomorphic Manipulators

D. Mitrovic, S. Nagashima, S. Klanke, T. Matsubara, S. Vijayakumar

Djordje Mitrovic, Stefan Klanke and Sethu Vijayakumar, Learning Impedance Control of Antagonistic Systems based on Stochastic Optimisation Principles, International Journal of Robotic Research, Vol. 30, No. 5, pp. 556-573 (2011).

OFC-LD: Explaining Motor Adaptation

Can predict the "ideal observer" adaptation behaviour under complex force fields due to the ability to work with adaptive dynamics

Constant Unidirectional Force Field

Velocity-dependent Divergent Force Field

Cost Function:

$$v = w_p |\mathbf{q}_K - \mathbf{q}_{tar}|^2 + w_v |\dot{\mathbf{q}}_K|^2 + w_e \sum_{k=0}^K |\mathbf{u}_k|^2 \Delta t$$

$$n = 1900$$

Djordje Mitrovic, Stefan Klanke, Rieko Osu, Mitsuo Kawato and Sethu Vijayakumar, A Computational Model of Limb Impedance Control based on Principles of Internal Model Uncertainty, *PLoS ONE*, Vol. 5, No. 10 (2010).

OFC-LD: Computational Advantages

OFC-LD is computationally more efficient than iLQG, because we can compute the required partial derivatives analytically from the learned model

manipulator:	2 DoF	6 DoF	12 DoF
finite differences	0.438	4.511	29.726
analytic Jacobian	0.193	0.469	1.569
improvement factor	2.269	9.618	18.946

Table 1: CPU time for one iLQG–LD iteration (sec).

$$\begin{split} \tilde{f}(\mathbf{z}) &= \frac{1}{W} \sum_{k=1}^{K} w_k(\mathbf{z}) \psi_k(\mathbf{z}), \quad W = \sum_{k=1}^{K} w_k(\mathbf{z}), \\ \psi_k(\mathbf{z}) &= b_k^0 + \mathbf{b}_k^T (\mathbf{z} - \mathbf{c}_k), \\ \hline \frac{\partial \tilde{f}(\mathbf{z})}{\partial \mathbf{z}} &= \frac{1}{W} \sum_k \left(\frac{\partial w_k}{\partial \mathbf{z}} \psi_k(\mathbf{z}) + w_k \frac{\partial \psi_k}{\partial \mathbf{z}} \right) \\ &\quad - \frac{1}{W^2} \sum_k w_k(\mathbf{z}) \psi_k(\mathbf{z}) \sum_l \frac{\partial w_l}{\partial \mathbf{z}} \\ &= \frac{1}{W} \sum_k \left(-\psi_k w_k \mathbf{D}_k(\mathbf{z} - \mathbf{c}_k) + w_k \mathbf{b}_k \right) \\ &\quad + \frac{\tilde{f}(\mathbf{z})}{W} \sum_k w_k \mathbf{D}_k(\mathbf{z} - \mathbf{c}_k) \end{split}$$

Variable Impedance Plants

Optimized **co-contraction profiles** are quite **different** from how humans use their antagonistic musculoskeletal system. So what is missing?

Djordje Mitrovic, Stefan Klanke, Sethu Vijayakumar, Adaptive Optimal Control for Redundantly Actuated Arms, *Proc. Tenth International Conference on the Simulation of Adaptive Behavior (SAB '08), Osaka, Japan* (2008)

Realistic kinematic variability

 $\sigma(\mathbf{u}) = \sigma_{isotonic} |u_1 - u_2|^n + \sigma_{isometric} |u_1 + u_2|^m, \quad \boldsymbol{\xi} \sim N(0, \mathbf{I}_2)$

Results: Higher accuracy demands

See: Osu et.al., 2004; Gribble et al., 2003

Results: Adaptation to external force fields

Stochastic OFC-LD

Djordje Mitrovic, Stefan Klanke, Rieko Osu, Mitsuo Kawato and Sethu Vijayakumar, A Computational Model of Limb Impedance Control based on Principles of Internal Model Uncertainty, *PLoS ONE* (2010).

Variable Impedance Policies -- through Stochastic Optimization

Assume knowledge of **actuator dynamics** Assume knowledge of **cost** being optimized

- Explosive Movement Tasks (e.g., throwing)
- Periodic Movement Tasks and Temporal Optimization (e.g. walking, brachiation)
- Learning dynamics (OFC-LD)

Imitate or Optimize?

Assume knowledge of **actuator dynamics** Assume knowledge of **cost** to be optimized

Routes to Impedance Behaviour Imitation

Transferring Behaviour

IIT actuator

Routes to Behaviour Transfer (1)

Routes to Behaviour Transfer (1)

Direct transfer on the level of policies (states, actions) [Alissandrakis et al., 2007]

$${}^{e}\mathbf{x},{}^{e}\mathbf{u}\longleftrightarrow{}^{\prime}\mathbf{x},{}^{\prime}\mathbf{u}$$

Requires **close correspondence** between human/robot

- e.g., McKibben muscles
- \rightarrow little or no pre-processing of data required.

Routes to Behaviour Transfer (2)

Routes to Behaviour Transfer (2)

Direct transfer on the level of policies (states, actions) [Alissandrakis et al., 2007]

$${}^{e}\mathbf{x},{}^{e}\mathbf{u}\longleftrightarrow{}^{\prime}\mathbf{x},{}^{\prime}\mathbf{u}$$

Requires **close correspondence** between numan/robot

- ▶ e.g., McKibben muscles
- \rightarrow little or no pre-processing of data required.

Feature-based transfer: track certain 'features' of the movement e.g.,

$${}^{e}\phi({}^{e}\mathbf{x},{}^{e}\mathbf{u},t)\longleftrightarrow{}^{\prime}\phi({}^{\prime}\mathbf{x},{}^{\prime}\mathbf{u},t)$$

Selection of features depends on the task, e.g.,

- torque profiles $\phi(\mathbf{x}, \mathbf{u}, t) \equiv \tau(\mathbf{x}, \mathbf{u}, t)$
- \rightarrow requires detailed understanding of dynamics.

Variable Stiffness Actuator Designs

'Ideal' VSA:

- $\mathbf{u} = (q_0, k)^T$
- stiffness (k), eq. pos. (q0)
 directly controllable

Edinburgh SEA:

- $\mathbf{u} = (\alpha, \beta)^T$
- biomorphic, antagonistic design
- coupled stiffness and eq. pos.

MACCEPA:

- $\mathbf{u} = (m_1, m_2)^T$
- (nearly) de-coupled, stiffness and eq. pos. control

Large disparity in Actuator Mechanics

$$\boldsymbol{ au} = \boldsymbol{ au}(\mathbf{x},\mathbf{u}) = -\mathbf{K}(\mathbf{x},\mathbf{u})(\mathbf{q}-\mathbf{q}_0(\mathbf{x},\mathbf{u}))$$

Feature based Transfer

All have joint torque relationship of the form

$$\begin{split} \tau &= \tau(\mathbf{x}, \mathbf{u}) = -\mathsf{K}(\mathbf{x}, \mathbf{u})(\mathbf{q} - \mathbf{q}_0(\mathbf{x}, \mathbf{u})) \\ \text{Joint stiffness} & \mathsf{K}(\mathbf{x}, \mathbf{u}) = -\frac{\partial \tau(\mathbf{x}, \mathbf{u})}{\partial \mathbf{q}} \Big|_{\mathbf{x}, \mathbf{u}} \\ \text{Equilibrium postion} & \text{solve } \tau(\mathbf{x}, \mathbf{u}) = \mathbf{0} \end{split}$$

Common features q₀, K - independent of the device.

Feature-based Transfer

Transfer by tracking certain 'features' of the movement e.g.,

[Inamura et al., 2004]

$${}^{e}\phi({}^{e}\mathsf{x},{}^{e}\mathsf{u},t)\longleftrightarrow{}^{\prime}\phi({}^{\prime}\mathsf{x},{}^{\prime}\mathsf{u},t)$$

Feature based Transfer

Given

$$\mathbf{q}_0 = \mathbf{q}_0(\mathbf{x},\mathbf{u}) \in \mathbb{R}^n$$
 and $\mathbf{k} = \mathbf{k}(\mathbf{x},\mathbf{u}) = vec(\mathbf{K}) \in \mathbb{R}^{n^2}$

Take derivatives

$$\dot{\mathbf{q}}_0 = \mathbf{J}_{\mathbf{q}_0}(\mathbf{x}, \mathbf{u})\dot{\mathbf{u}} + \mathbf{P}_{\mathbf{q}_0}(\mathbf{x}, \mathbf{u})\dot{\mathbf{x}}, \qquad \dot{\mathbf{k}} = \mathbf{J}_{\mathbf{k}} \ (\mathbf{x}, \mathbf{u})\dot{\mathbf{u}} + \mathbf{P}_{\mathbf{k}} \ (\mathbf{x}, \mathbf{u})\dot{\mathbf{x}},$$

Constrain changes in u according to

$$\dot{\mathbf{u}} = \mathbf{J}(\mathbf{x}, \mathbf{u})^{\dagger} \dot{\mathbf{r}} + (\mathbf{I} - \mathbf{J}(\mathbf{x}, \mathbf{u})^{\dagger} \mathbf{J}(\mathbf{x}, \mathbf{u}))\mathbf{a}$$

- r is our task space (q₀, k, or both)
- ▶ J is the appropriate Jacobian (J_{q₀}, J_k, or both)
- **a** is an arbitrary redundancy term.

Direct Transfer vs Feature Tracking

Direct Transfer: Feed EMG directly to motors

Impedance Transfer: Pre-process EMG, track stiffness and equilibrium position

Matthew Howard, David Braun and Sethu Vijayakumar, Constraint-based Equilibrium and Stiffness Control of Variable Stiffness Actuators, *Proc. IEEE International Conference on Robotics and Automation (ICRA 2011),* Shanghai (2011).

Routes to Behaviour Transfer (3)

Cost Functions for Movement Plans

Multiplicative Weights Apprenticeship Learning [Syed et al., 2008] Inverse optimal control method

• We are given ${}^{e}\mathbf{f}, {}^{e}X, {}^{e}U$

Key Assumption

$${}^{e}J = \sum_{i=1}^{n_{T}} w_{i}{}^{e}h_{i}({}^{e}\mathbf{x}(T))$$

$$+\sum_{i=n_T}^N w_i \int_0^T e^{t} l_i(e^{\mathbf{x}}, e^{\mathbf{u}}, t) dt$$

with $e_{h_i}(\cdot), e_{i_i}(\cdot)$ known.

... we seek
$$e^{J}(\mathbf{x}, \mathbf{u}, t)$$

Iterative Approach

- Solve forward optimisation under current estimate of w
- Update ŵ by comparing value functions

Transferring Behaviour: Different Actuators

expert

imitator

0.2

0.2

0.24

0.24

0.12

velocity

0.12

t (s)

0.16

0.16

-0.1

dq/dt (rad/s)

0

10

0

0.04

0.04

0.08

0.08

Transfer ball hitting task across different VIAs:

Very different command sequences due to different actuation

Optimal impedance control strategy very similar across plants

Imitating Human Hitting

- Direct imitation: lower velocity at time of impact, less powerful hit
- Apprenticeship learning: movement is optimised to robot dynamics, ball is hit further

M. Howard, D. Mitrovic & S. Vijayakumar, Transferring Impedance Control Strategies Between Heterogeneous Systems via Apprenticeship Learning, *Proc. IEEE-RAS International Conference on Humanoid Robots*, Nashville, TN, USA (2010)).

Need for Model Free Methods

- Model-based transfer of human behavior has relied on demonstrator's dynamics: in most practical settings, such models fail to capture
 - the complex, non-linear dynamics of the human musculoskeletal system
 - inconsistencies between modeling assumptions and the configuration and placement of measurement apparatus

Model-free Transfer

- Original Monte Carlo method and model-based method on MWAL Requires: (human) dynamics model ^ef
- Model-free LSTDf and LSPIf combined on MWAL Requires: exploratory data ^aD instead of using dynamics model

Model-based vs. Model-free AL

Model-based

Policy Optimization

- iLQG with dynamics ^ef
 - Repeat until convergence
 - \mathbf{x}, \mathbf{u}_t $\mathbf{x}_{t-\tau}$ is sampled under $\mathbf{e} \mathbf{f}$ and $\mathbf{\pi}$
 - For t = T-1 to 0
 - Value estimation (Taylor expansion)

 $J_t(\boldsymbol{\pi}_t + \Delta \boldsymbol{\pi}_t) \approx J_t(\boldsymbol{\pi}_t) + \Delta \boldsymbol{\pi}_t^{\mathrm{T}} \mathbf{A}_t \Delta \boldsymbol{\pi}_t - \mathbf{b}_t \Delta \boldsymbol{\pi}_t$ where **A**_t and **b**_t are calculated from ^e**f** • Policy optimisation

- - $\min J_t(\boldsymbol{\pi}_t + \Delta \boldsymbol{\pi}_t) \implies \Delta \boldsymbol{\pi}_t = \mathbf{A}_t^{-1} \mathbf{b}_t$ $\pi_t := \pi_t + \Delta \pi_t$

Estimate values

Monte Carlo method

Sample
$$\mathbf{x}_{t}^{k}, \mathbf{u}_{t}^{k} \stackrel{\uparrow}{\underset{t \neq 0:T,k=1:K}{\longrightarrow}}$$
 with effective $v_{i} = \frac{1}{K} \sum_{k=1}^{K} \xi(\mathbf{x}^{k}, \mathbf{u}^{k})$

Model-free (off-policy, finite horizon)

- LSPIf with 1. random samples ^aD
 - **2.** basis functions $\phi(\cdot)$ (from graph Laplacian)
 - For t = T-1 to 0
 - Value estimation with ^aD and $\phi(\cdot)$
 - Policy optimization
 - off-policy:

sampling phase (generating ^aD) is excluded from learning process

- LSTDf (LSPIf with fixed policy)
 - Estimate v_i with ^aD and $\phi(\cdot)$

Least Squares Policy Iteration for finite horizon problem (LSPIf)

- LSPI [Lagoudakis and Parr, 2003]
- Sampling phase
 - $\mathbf{x}_{m}^{*}, \mathbf{u}_{m}^{*}, \overline{\mathbf{x}}_{m}^{*}$ is generated
- Learning phase with $\phi(\cdot)$ given
 - Repeat until convergence
 - Value estimation

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{m=1}^{M} \boldsymbol{Q}^{\pi}(\mathbf{x}_{m}, \mathbf{u}_{m}) - \boldsymbol{\varphi}(\mathbf{x}_{m}, \mathbf{u}_{m})^{\mathrm{T}} \boldsymbol{\theta}^{2}$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \implies \boldsymbol{\theta} = \mathbf{A}^{-1} \mathbf{b},$$

where $\mathbf{A} = \sum_{m=1}^{M} \boldsymbol{\varphi}_m \, \boldsymbol{\phi}_m - \overline{\boldsymbol{\varphi}}_m \, \boldsymbol{\gamma},$
 $\mathbf{b} = \sum_{m=1}^{M} \boldsymbol{\varphi}_m r_m$

• Policy optimisation $\pi(\mathbf{x}) = \arg\min_{\mathbf{u}} \boldsymbol{\varphi}(\mathbf{x}, \mathbf{u})^{\mathrm{T}} \boldsymbol{\theta}$

LSPIf

- Sampling phase
 - $\mathbf{x}_{n}, \mathbf{u}_{m}, \overline{\mathbf{x}}_{m}$ is generated
 - Learning phase with $\phi(\cdot)$ given

 $J_t(\boldsymbol{\theta}_t) = \frac{1}{2} \sum_{m=1}^{M} \boldsymbol{\Phi}_t^{\pi}(\mathbf{x}_m, \mathbf{u}_m) - \boldsymbol{\varphi}(\mathbf{x}_m, \mathbf{u}_m)^{\mathrm{T}} \boldsymbol{\theta}_t^{2}$

$$\min_{\boldsymbol{\theta}_{t}} \boldsymbol{J}_{t}(\boldsymbol{\theta}_{t}) \implies \boldsymbol{\theta}_{t} = \mathbf{A}^{-1}\mathbf{b},$$

where $\mathbf{A} = \sum_{m=1}^{M} \boldsymbol{\varphi}_{m} \boldsymbol{\varphi}_{m}^{\mathrm{T}},$
 $\mathbf{b} = \sum_{m=1}^{M} \boldsymbol{\varphi}_{m} \boldsymbol{\xi}_{m} + \hat{V}_{t+1}(\bar{\mathbf{x}}_{m})$

• Policy optimisation $\pi_t(\mathbf{x}) = \arg\min_{\mathbf{u}} \boldsymbol{\varphi}(\mathbf{x}, \mathbf{u})^{\mathrm{T}} \boldsymbol{\theta}_t$

Imitating Human Hitting

$$J = w_1 \Psi(T) - q^* \sum_{i=1}^{2} - w_2 \dot{q}(T) + w_3 \int_0^T Z \ddot{q}^2 dt$$

- Wrong combination (u₁,u₃):
- Right combinations (u₁,u₂), (u₂,u₃):
- All EMGs (u₁,u₂,u₃):

hit at the wrong time hit at the right time hit at the right time with small variance 0.08 (0.21 for other combinations)

To conclude...

- Optimization methods
 - Need to exploit plant (actuator) dynamics
 - Direct policy methods allow this
 - Are effective when one has a good estimate of costs functions that need optimized
- Imitation and Transfer methods
 - Should not naively mimic impedance profiles across heterogeneous systems
 - Transfer at the level of objectives most appropriate

Credits

- Dr. Matthew Howard
- Dr. David Braun
- Dr. Jun Nakanishi
- Konrad Rawlik
- Dr. Takeshi Mori
- Dr. Djordje Mitrovic
- Evelina Overling
- Alexander Enoch

Microsoft[®] Research

The Royal Academy

of Engineering

HONDA The Power of Dreams

More details at

- My webpage and relevant publications:
 - http://homepages.inf.ed.ac.uk/svijayak
- Our group webpage:
 - http://ipab.inf.ed.ac.uk/slmc