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Abstract—The paper addresses the problem of controlling the joints of a flexible joint robot with
a state feedback controller and proposes a gradual way of extending such a controller towards the
complete decoupling of the robot dynamics. The global asymptotic stability for the state feedback
controller with gravity compensation is proven, followed by some theoretical remarks on its passivity
propertys. By proper parameterization, the proposed controller structure can implement a position,
a stiffness or a torque controller. Experimental results on the DLR lightweight robots validate the
method.
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1. INTRODUCTION

The development of robotics in the past few years has gone from the earlier standard
applications of industrial robots to new fields such as space and service robotics
and force-feedback systems. A common feature that all robots suitable for these
applications must share is a lightweight construction with a high load to weight
ratio. The two lightweight robots at the DLR are designed with these considerations
in mind [1, 2]. A main problem which is specific for the implementation of
these new robot concepts is the inherent flexibility introduced into the robot
joints. Consequently, the success in these robotics fields is strongly dependent on
the design and implementation of adequate control strategies which, by making
extensive use of sensory information, can compensate for the structural elasticity
in the robot joints and provide fast control bandwidths near to those of industrial
robots.

*To whom correspondence should be addressed. E-mail: Alin.Albu-Schaeffer @dlr.de
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In the past 15 years a large amount of research has been focused on the control of
flexible joint robots. Starting from control methods developed for rigid-body ma-
nipulators, there are some very powerful theoretical results concerning the control
of manipulators with joint elasticities. These include singular perturbation and in-
tegral manifold, feedback linearization, and dynamic feedback linearization along
with adaptive control techniques. Integral manifold and singular perturbation tech-
niques solve the control problem by a two-stage strategy [3, 4]. They propose a fast
joint torque control loop, corresponding to the fast part of the manipulator dynam-
ics, and a slower outer control loop, corresponding to the rigid-body dynamics of
the robot. These control strategies use the assumption of a weak elasticity of the
joints. In the case of the DLR lightweight robot this is just marginally satisfied. Our
experiments [5] showed that the difficult part of this method is the implementation
of the fast joint torque controller. Under conditions of considerable elasticity and
noisy torque and torque derivative signals, the bandwidth of the resulting torque
controller limits the overall bandwidth of the system. While implementation of
force and impedance control showed good results, the position control proved to be
slower than with other methods. The feedback linearization controller proposed by
Spong [3] uses a somewhat simplified robot model. Even in this case the computa-
tions are much more involved compared to the equivalent computed torque method
for rigid robots. In the most general case, the dynamics of the flexible joint robot
is not feedback linearizable. De Luca [6] solves this problem by dynamic state lin-
earization. He uses not only the actual state of the robot, but also the values of the
past states, the resulting control structure having the order 2N (N — 1). In order to
overcome the main disadvantage of feedback linearization, i.e. the requirement of
exact knowledge of robot parameters, adaptive control techniques have been pro-
posed [7, 8].

Although these control methods are complete from the theoretical point of view,
they are very difficult to implement. Mostly, tests are reported only through
simulations or on one or two robot joints. For complex structures, such as the
7 d.o.f. redundant DLR robots, the involved computations required, the lack of
robustness on parameter or model uncertainties and the difficulties in interpreting
and debugging the results are serious obstacles when implementing these methods.

The practitioners attack the problem from the other end. One starts by imple-
menting simple control structures such as PD controllers, which work for indus-
trial robots, adding some damping for the joint elasticity or using linear techniques
known from the control of elastic actuators. The bandwidth of the controllers has
to be reduced until robustness against the highly non-linear dynamics is reached.
Stability proofs for such controllers are more complicated than for controllers using
extensive model information. Starting from [9], which provides the theoretical justi-
fication for the PD controller still used in most industrial robots, Tomei [10] proved
the stability of PD control with gravity compensation also in the case of flexible
joint robots. Since this controller uses only motor-side information, it is practically
quite under-damped unless the bandwidth is considerably reduced.
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This paper proposes an intermediate between the theoretical and the practical
approaches presented before. The main focus of the paper is on a simple control
structure in the form of a joint state feedback controller with gravity compensation.
Since it uses both motor and link states, its performance is superior to that of
the PD controller. In analogy to [9, 10] and a stability proof for this controller
is presented, based on Lyapunov’s first method. Compared to other controllers,
this one is practically efficient and easy to implement, even for many d.o.f., and
still theoretically well-founded. The control structure is then gradually extended
by adding more information about the robot dynamics. This controller is presently
used to control the new DLR robot and proved its efficiency in daily operation.

2. HARDWARE DESCRIPTION

The two lightweight robots developed at the DLR are very well suited for the
implementation and testing of the control algorithms mentioned in the previous
section. By designing highly integrated mechanical and electrical components, a
load to own weight ratio of around 1 : 2 is achieved, for a robot weight of 17 kg. For
joint control, the motor position and the joint torque signals based on strain gauge
technology are available. The new robot (Fig. 1) is equipped with link position
sensors as well. Additionally, a 6-d.o.f. force-torque sensor is integrated in the
robot’s wrist. Both robots are redundant 7-d.o.f. manipulators. The use of a floating

Figure 1. The new DLR lightweight robot.
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point signal processor for each joint controller and a fast optical communication bus
(1 ms) between the joints and the robot controller provides the necessary flexibility
and computing power for involved control algorithms. The driving PM motors are
controlled field oriented using analog Hall sensors, in order to reduce the motor
torque ripple.

3. CONTROLLER STRUCTURE

For the design of the controller we start by considering the robot model proposed
by Spong [3]:

Tm=JGi +7+ DK 't + 1p, (1)
T4+ DK~ 't = M(q2)i> + C(q2, 42)42 + g(q), (2)
T = K(q1 — q2), (3)

T 1s the motor torque vector, g; and g is the motor and link positions, respectively,
and 7 is the joint torque. J is the motor inertia matrix, and K and D are the elasticity
and damping matrices, caused mainly by the gear box and the torque sensor. These
matrices are diagonal and positive definite. M, C and g are the same as for stiff
robots: the mass matrix, the Coriolis and centripetal torque vector, and the gravity
vector. In these equations the kinetic energy of the rotors due to link movements is
neglected, only the kinetic energy due to their own rotation being considered. For
the reduction ratio of 160 (up to 606 in the first version) of our robots, this is a good
approximation. T is the friction force vector. For the simulation and compensation
of friction we used the following model:

if g1 < e
Tp =Ty if |Tw| < !rléna" ,
TF=T 0 = (rc + ;L|r|)sign(tm) else 4)

if |g1] > &
7 = (rc + pltl)sign(dr) + digu,
7c and p are the coefficients of the constant and the torque-dependent Coulomb
friction, respectively. S and vs parameterize the stiction and d; is the viscous friction
coefficient. € is zero in the real system and set to a small constant in simulation to
avoid exact zero crossing detection.

The equations describing the dynamics of one joint can be split into a linear part
and the non-linear terms, printed in boldface:

T, = Jid, + T + dk~ 4 + T,
T+ dk T G = miga,., - @) )

+ > my(a)dz + €2, 42)dz + 2i(q2).
JEIL
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Figure 2. Controller structure.

Notice that the inertia m;; is dependent only of the angles of the subsequent joints
and not of the joint i itself.

The PD controller is a very simple and robust controller still used for most stiff
industrial robots. Its straightforward extension to the case of flexible joint robots is
a fourth-order state feedback controller for controlling the linear part in (5), while
neglecting the non-linear terms. In subsequent stages, additional terms can complete
the controller to compensate for gravity and friction, leading to the following control
law:

Twm = Kpg1 — Kpg1 — Ky K~ 't — KsK~ 't
+ (K + Kr)K ' g(qaa) + e, (6)

Kp,Kp, Ks and Ky are diagonal gain matrices. To compensate for the variation
of m;; or to implement variable joint stiffness and damping, the feedback gains
can be modified online. As a last step, the centripetal and Coriolis terms, as well as
inertial couplings can be compensated for. Figure 2 presents the proposed controller
structure.

Six state signals are available for the joint control of the second robot, out of
which three are obtained by direct measurement and the other three by numerical
differentiation:

xm={6]2,42,6]1,6]1,"7,7}}- (7)
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This redundancy is very useful in practice. By fusion of redundant sensor
information, the parameter identification is substantially simplified and improved.
An advantage of using the torque signal in the control structure is that, by adequate
setting of the feedback gains, it can be used to implement a torque controller or a
stiff position controller. We used it to implement an impedance controller as well,
which in fact covers the previous two structures as special cases.

The proposed controller structures can be regarded as successive simplifications of
the feedback linearization controller, by omitting terms which are computationally
expensive. With the available computing power, it turned out to be not possible to
implement the complete feedback linearization controller in real time.

4. STABILITY PROOF FOR THE STATE FEEDBACK CONTROLLER WITH
GRAVITY COMPENSATION

The Lyapunov proof makes use of some well known properties of the robot dynamic
model [9, 10, 14]:

o (P1) Positive definiteness of the mass matrix

A < | M(g2)|| < Awm, ®)

with A, Ay the minimal and maximal eigenvalues of M.

o (P2) The matrix %M (g2) — C(q2, q2) is skew symmetric, hence:

1 .
a [EM(‘”) — C(q, q'2>] ¢ = 0. 9)

e (P3) The gravity potential energy Ug, with:

<3UG(612) 8UG(Clz))
9921 ’ ’ 0q2n

= 8(q2), (10)

is dominated by some quadratic function for a suitably chosen «:

1
|Us(q20) — Uc(q2) + (g2 — q20)" 8(q20)| < 501”6]2 — gl (1T)
or, equivalently:

lg(q2a) — &gl < @llg2 — qoall, (12)

24 is the desired link position. We rewrite the dynamic equations only in terms of
the motor position and velocity g, ¢; and the link position and velocity g2, g».

KAq+ DAg = M(q2)q2 + C(q2, 42)q2> + 8(q2),
tn = Ji1 + KAG + DAG + 5. (13)
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The control law (6) can be rewritten as:
Tm = Kpq1 — Kpq1 — KrAq — KsAq
+ (K + K1)K ™' g(qa0) + . (14)

Here we use the following notations:

Ag =q1 — qa, (15)

dj=9qja—q;, Jj=12. (16)

By setting all derivatives in (2) to zero for the desired equilibrium point, the
reference motor position is related to the reference link position by:

g1 = q2a + K" g(q0). (17)
To prove the asymptotic stability of the controller, consider the following Lya-
punov function candidate:
_ l . T 17 l.T .
V=24 K(K+ Kr)" g1+ 24, M(92)42

L 1 g -1z

+ 5(6]1 —q2) K(q1 — q2) + 56]1 KpK(K + K1)
+Uc(q2) = Us(g2a) + 43 8(42a)- (18)

This function contains the kinetic energy of the motor and of the rigid body robot,
the potential energy of the gravity force and of the link elasticity, and the energy
corresponding to the controller. While for the proportional and the derivative terms
the equivalence to a physical spring-damper suggests the choice of the energy, for
the torque and torque derivative feedback such an analogy is not straightforward.
A passivity-based method to find the energy function (18) of the state feedback
controller is presented in Section 6.
If we use the state vector:

X=[6}1,6]1,41 —6]2,6]1 —6]2], (19)
and the reference vector:
x4 =10, q14, 0, q1a — q2al. (20)

then we have V (xq) = 0. To prove that V(x) > 0 for x # x4 we use property (P3)
and obtain:

VZ>Vi+V,, (21)

with:

1. 1 .
4 =5q{ K(K + Kr) 1Jq1+5q5 M(q2)¢a, (22)
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1 ~ ~ T ~ ~ 1~T ~
Vy= 5(611 —q) K(q1 —q2) — 592 %9
1. 1~
+ 501 KpK(K + Kp) ™. (23)

For:
k,'+kT,'>0, i=1,...,N, (24)

and regarding (P1), V; is always positive. N is the number of robot joints. Since in
V, all matrices are diagonal, V, can be written as:

N
V=) Va, (25)
i=1
V,; are quadratic functions of §;; and g,; with the Hessian:
1 ki —a —k;
H(Vy) = 2|k k <1+ kpi ) . (26)
ki + ki
With (24), it follows that V; is p.d. if
o < k;
o< %, kp; > 0. @7

Then V is p.d. if the conditions (24) and (27) are satisfied. The derivative of the
Lyapunov function V is:

V =g K(K + Kr)~"'Ji + ¢ M(g2)ii

1. P
+ EQzTM(Clz)OD —A¢"K(G1 — &)
— T KpK(K + Kr)7'g1 + 41 g(q2) — 41 g(qr0). (28)

In order to compute the derivative of V along the trajectories of the system we
substitute (13), (14) into (28):

V=4 K(K +Kr)"'[-~(K + Kr)Aq + Kpd
— Kpgi — (D + K9)Ag + (K + K7)K ™' g(q2a)]
+4; [KAq + DAG — C(q2. 42)d2 — 8(q2)]
+ 5l M@z~ 8K @~ @)

— ¢l KpK(K + K1) "1 + 45 (8(q2) — 8(q2a))- (29)
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By using (P2) we obtain after some simplifications:
V=—q] KK + K 7' [Kpgi + (D + Ks)Aq]
+ ¢l DAG — AT K Aq
— AG"K @ — @) + (] — d3)8(q0)- (30)
Using (17) and the fact, that
g — 42> = Aqqa — Aq, (31)
we finally get:
V=—¢'KKp(K +Kr)"'¢g+ 47 DAG
— 4] K(D+ Ks)(K + K1) ™' Aq. (32)

Since, again, all matrices are now diagonal, we have:

N
V=YV, (33)
i=1
with
. 1
Vi = — kp + ks + d)kg?
k+kT[( b + ks + d)kg
— ((ks + 2d)k + dky )i + (dky + dk)g3]. (34)

The indices i were omitted for the sake of simplicity. V is n.d. if the Hessian matrix
H(-V;)isp.d.:

. 1 2(kp + ks + )k —ksk —2dk — dk
H(—V,~)=—|: (kp + ks +d) Ti|. 35)
2k + ky) [ —ksk — 2dk — dkr 2(dkr + dk)
With (24), this requires the following condition to be satisfied:
ksk — krd)?
o > Ksk = kpd)” (36)
4kd(k + kr)

From (34) we see that V is just negative semidefinite. Thus we have to make
use of Lasalle’s invariance theorem [11, 12] to prove the asymptotic stability of
the controlled robot. We have to prove that x4 is the maximal invariant set of the
subspace:

x={¢q1=0,91,9 =0, qa}. (37)
The condition (37) implies:

qG1=0, ¢=0,

g1 = const., g, = const. (38)
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By imposing the conditions (38) on (13), (14) we obtain the equations of the largest
invariant set.

KAq —g(q2) =0,

—KAq+ KpK(K + K1) 7'q1 + g(qaa) =0, (39)
using (17) for both g4 and gq;, we get:
2(q2) — 8(q2) = KKp(Kp + K7 + K) "' (g2 — q24)- (40)

But for ¢» # g24 and considering (12) and (27) the following inequalities hold:
1g(q2a) — (g2l < all(g2 — q2a) |l
< |KKp(Kp + Kr + K) 7 (g2 — q20) |- (41)

So we can conclude that (40) cannot have other solutions than g, = ¢yq and
therefore the point x = x4 is globally asymptotically stable.

5. FRICTION INFLUENCE

Since friction is a dissipative force, the proof works also for the controller without or
with inexact friction compensation. In this case V and (24), (27) remain unchanged.
V contains the additional n.s.d. term — —q; TK(K 4+ K1)~ 't so that (36) is still valid.
However, because of the Coulomb friction term, (40) changes to:

“N(Kp+ Kr 4+ K)(g(qa) — 8(q2) + Kp(qa — ¢2) = T, (42)

with |tg] < ™ from (4). In this case, the maximal invariant set extends to an
interval for each joint:

q € (6]2di — /8, qaai + Tﬁ?ax/fs), (43)
with:
k k k
5=kp_—“(P+kT+). (44)

This reflects the fact that, with uncompensated Coulomb friction, the joint will stop
within a dead zone around the desired position.

6. PASSIVITY CONSIDERATIONS ON THE JOINT CONTROLLER

In this section we use the passivity theory to provide a systematic way of deriving
the Lyapunov function (18). We will show that the flexible joint robot, controlled
with (6), can be regarded as a parallel and feedback connection of passive systems
(Fig. 3), and hence it is itself a passive system.

Let us consider the actuator side equation of the robot dynamics (1) together
with (3) and the controller (6) for each joint as a system with the input u = —¢»
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Figure 3. Representation of the robot as a connection of passive blocks.

and the output y = t,, with v, = k(q; — q2) + d(§1 — ¢»). We intend to write this
system in the passivity form:

Y (®ut) = V() + Dp(1), (45)

with the stored energy V, the dissipated power D, and the external power exchange
yTu. We have:

—Tuq2 = —k(q1 — q2)q2 — d(q1 — §2)§>
d [k ) . Lo
=< <5(611 - 6]2)2) — k(g1 — )41 — d(§1 — ¢2) . (46)
From (1), (3) and (6), by assuming exact friction compensation and ignoring the
gravity, we get:

k
k+ kr

k(gi — q2) = — (J1G1 — kpgy + kpgi + (d + k) (@1 — ¢2)).  (47)

Substituting (47) into (46) we finally obtain:

. d( E G s D+ 3k >2)

PG Gk k! T 2wk TN T
v,

kpk .,  krd —kks . N ) .2

- - d(g, —¢)*. (48

+(k+kT)q1 k1 kr (G1 — ¢2)q1 +d (g1 — ¢2) (48)

~

DPi

The energy expression V; is always positive and D, is a quadratic function of
{q1, g2}, which can be rewritten as:

((kp + ks + d)kg?

D, —
Pi k+kT
— ((ks + 2d)k + dk)d1da + (dkr + dk)g2). (49)
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It follows that the condition for the passivity of the system is Dp, > 0. This
condition is equivalent to (36) and is the same as for the negative definiteness of
V from (24).

The Lyapunov function for the whole robot (18) can be obtained as the sum of the
energy V; for each joint and the mechanical energy of the rigid robot

1, .
Viigia = Eqi M(g2)dr + Us(qn). (50)

The last two terms in (18) are related to the gravity compensation term in (6), which
is necessary for establishing the condition V(g.q) = 0, and hence for the global
asymptotic stability proof.

An advantage of this controller structure over the PD control [10] is that the
joint elasticity is included in the same passive block as the controller, providing
the possibility to compensate for the effects of joint deformation. As it can be
seen from the plots in Section 7, the controller provides an effective oscillation
damping. It should be noticed that the controller structure (6) can implement by a
proper parameterization a position, a stiffness or a torque controller while, as long
as condition (36) is fulfilled, its passivity property is preserved.

7. EXPERIMENTAL RESULTS

A major practical step for the implementation of the proposed controller structure is
the parameter identification. Because of the large number of parameters, we divided
them in several groups which were identified separately. The robot’s kinematic
and dynamic parameters are very precisely computed using current mechanical
CAD programs and measurement-based optimization of these parameters brought
no considerable improvements. The friction parameters were identified based on
current, torque and speed measurements on relevant trajectories for the whole
robot.  Although the characteristics of the current controlled motors can be
identified together with the friction parameters, this leads to a bad conditioning
of the optimization problem. Therefore the motor parameters were also identified
separately using a motor testbed. The finite element method evaluation for the joint
elasticity was not precise enough, so we determined it from the joint oscillation
frequency, knowing the inertia. For the new robot, the available sensors enable
online computation of the elasticity. The identification resulted in a very exact
simulation model (Fig. 4), which is used for the design and test of the controllers.
The values of the parameters for axis 2 of the second robot are listed in Table 1.

For a detailed description of the identification method and the results, as well as
for further experimental data for all joints with the state feedback controller, please
refer to [13].

Figures 5 and 6 present experimental comparisons between the proposed con-
troller and a PD controller for both robots. One shows the case in which both
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Figure 4. Parameter identification for axis 2 of the second DLR robot.

Table 1.

time [s]

Jy =4.44
Mo max = 10.277
g(g2)max = 105.1

k=1410*
d = 0.1075
f» = 41.9950

kg m?
kgm2
Nm
Nm
rad
sNm

rad
sNm

rad

811

controllers have almost same bandwidth and the PD controller exhibits strong os-
cillations. The other one shows a better damped PD controller, which requires that
the bandwidth is just half of the state feedback control bandwidth.

Figure 7 compares a state feedback controller with fixed gains with a variable gain
controller on the first axis. During this experiment, the second axis was moved from
90° to 0°, so the link inertia for the first axis varied between 10.277 + 0.1 kgm?.
The fixed gain controller proves to work surprisingly well. By varying the gains,
one can achieve higher bandwidth for low inertia.
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Figure 5. PD versus state feedback control on axis 2 of the second DLR robot.
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Figure 6. PD versus state feedback control on axis 2 of the first DLR robot.

8. SUMMARY

In this paper we proposed a state feedback controller for flexible joint robots
which can be gradually extended to take account of the full robot dynamics. We
proved that even with the simple, fixed gain controller, the arm can be stabilized



A globally stable state feedback controller 813

or -~ -~ desired trajectory :
20k : — variable gain :

g ; ' : I R [ fix gain J=10 I
= " iy y . 5 :
S S ¢ : 7 :
o i ; ¥ .
5 20} i ; :
40 1 1 1 I i j

¢] 5 10 15 20 25 30

speed [rad/s]

position [rad]

15
time [s]

Figure 7. Fix gain and variable gain controller for axis 1. The inertia is continuously varying due to
the movement of joint 2.

around a reference position and the oscillations caused by the joint flexibility are
effectively damped. Compared to other controllers, this one is practically efficient
and easy to implement even for many d.o.f., and still theoretically well-founded.
The effectiveness of the controller is validated through experiments on the DLR
lightweight robots.
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