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Abstract

This paper describes a general passivity-based framework for the
control of flexible joint robots. Recent results on torque, position,
as well as impedance control of flexible joint robots are summa-
rized, and the relations between the individual contributions are
highlighted. It is shown that an inner torque feedback loop can be
incorporated into a passivity-based analysis by interpreting torque
feedback in terms of shaping of the motor inertia. This result, which
implicitly was already included in earlier work on torque and posi-
tion control, can also be used for the design of impedance controllers.
For impedance control, furthermore, potential energy shaping is of
special interest. It is shown how, based only on the motor angles,
a potential function can be designed which simultaneously incorpo-
rates gravity compensation and a desired Cartesian stiffness relation
for the link angles. All the presented controllers were experimentally
evaluated on DLR lightweight robots and their performance and
robustness shown with respect to uncertain model parameters. Ex-
perimental results with position controllers as well as an impact
experiment are presented briefly, and an overview of several appli-
cations is given in which the controllers have been applied.

KEY WORDS—flexible joint robots, torque feedback,
passivity-based control, impedance control, active vibration
damping
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1. Introduction

The currently growing research interest in application fields
such as service robotics, health care, space robotics, or force
feedback systems has led to an increasing demand for light
robot arms with a load to weight ratio comparable to that
of human arms. These manipulators should be able to per-
form compliant manipulation in contact with an unknown
environment and guarantee the safety of humans interacting
with them. A major problem specific to the implementation
of lightweight robot concepts is the inherent flexibility in-
troduced into the robot joints. Consequently, the success in
the above mentioned robotics fields is strongly dependent on
the design and implementation of adequate control strategies
which can:

• compensate for the weakly damped elasticity in the
robot joints in order to achieve high performance mo-
tion control,

• provide the desired Cartesian compliant behavior of the
manipulator,

• enable robust and fast manipulation in contact with un-
known passive environments,

• provide safety and dependability in interaction with
humans.

It is commonly recognized that these control goals require
sensing capabilities that exceed the classical position mea-
surement of industrial robots. The solution chosen in the case
of the DLR lightweight robots (Figure 1) was to provide the
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Fig. 1. The third generation of DLR lightweight robots, LWRIII. Left: teaching a peg in hole application at the Automatica
robotic fair. Right: LWRIII with the DLR hand holding an egg. A schematic representation of one flexible joint is added.

joints with torque sensors in addition to motor position sen-
sors (Hirzinger et al. 2001). The joint torque sensors play an
essential role both for active vibration damping during free
motion and for compliance and safe interaction control. Ad-
ditionally, a 6 dof force–torque sensor was mounted on the
robot wrist. The position control problem for flexible joint
robots has been treated extensively in the robot control lit-
erature (Spong 1987; Tomei 1991; Brogliato et al. 1995; De
Luca 2000; Lin and Goldenberg 1995). However, the prob-
lem of compliant motion control for interaction with unknown
environments and with humans has been addressed only re-
cently during consideration of robot flexibility (Goldsmith
et al. 1999; Zollo et al. 2005; Ott et al. 2004; Albu-Schäffer
et al. 2004b). The relevance of the topics becomes clear when
looking at the latest hardware developments, where elasticity
is deliberately introduced into the joints in order to increase
the interaction performance and safety of robots (Morita et al.
1999; Zinn et al. 2004; Bicchi et al. 2003).

Due to the fact that the model structure is more complex
than for rigid robots, there was still a gap between theoretical
solutions (which often require very accurate models and the
measurement or estimation of high order derivatives of the
joint position) and the practical solutions commonly chosen
for dealing with joint elasticity, which are not always based
on firm theoretical background. Of course, the control liter-
ature for flexible joint robots contains various different pos-
sible approaches, especially to the position control problem.
The best performance is theoretically given by decoupling-
based approaches, which provide a partially or even fully
linearized closed loop system and ensure global asymptotic

stability also for the tracking case (Spong 1987; Brogliato
et al. 1995; Lin and Goldenberg 1995; De Luca and Lucibello
1998; Lozano et al. 2000; Ott et al. 2002). These controllers,
however, require as a state vector the link side positions up
to their third derivative and/or a very accurate robot model.
For the DLR robots these approaches resulted in only mod-
erate performance and robustness. The situation with back-
stepping-based controllers is similar to that of decoupling-
based approaches. On the other hand, singular perturbation-
based controllers are easy to implement, but their performance
is theoretically and practically limited to the case of relatively
high joint stiffness. In order to cope with parameter uncer-
tainty, adaptive extensions have been proposed for most con-
troller types (Spong 1989; Nicosia and Tomei 1992; Lin and
Goldenberg 1995; Spong 1995, Brogliato et al. 1995; Zhu
and De Schutter 1999; Yim 2001; Ott et al. 2002), but even
those methods are usually sensitive to unmodeled dynamics.
For the DLR lightweight robots, we preferred the passivity-
based approach described below, because it is based only on
the available motor position and joint torque signals, as well
as their first-order derivatives, and provides a high degree
of robustness to unmodeled robot dynamics and in the con-
tact with unknown environments. The developed framework
is both theoretically sound and practically feasible, as demon-
strated by the various applications realized so far using these
controllers. The work most closely related to this paper can
be traced back to Takegaki and Arimoto (1981) for the rigid
robot case and contains, among others (Tomei 1991; Kelly
1997; Kelly and Santibanez 1998; Ortega et al. 1995; Lozano
et al. 2000; Zollo et al. 2005). The main contributions of the
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present work are the embedding of torque feedback into the
passivity-based control approach, leading to a full state feed-
back controller1, as well as the online gravity compensation
approach which removes any lower bound restrictions on the
position feedback gains. Together with the physical interpre-
tation of the torque feedback as inertia scaling, this makes it
possible to extend the concept from position control to joint
and Cartesian impedance control.

In this paper we first describe the robot model and give an
overview of the controller structures for the DLR robots in
Section 2, present the position controllers and sketch the pas-
sivity based theoretical framework on which the controllers
are based in Section 3, and go into some detail with the Carte-
sian impedance controller in Section 4. Finally we provide
experimental data in Section 5 in order to exemplify the con-
troller performance of both position and impedance control,
and shortly describe some typical applications in Section 6.

2. Problem Statement and Framework Overview

2.1. Flexible Joint Model

In order to include the effects of joint elasticity, a one dof joint
can be modelled by two inertias b and m which correspond to
the rotor and to the link respectively, and which are intercon-
nected by a spring-damper system with spring and damping
constants k and d (Figure 1). Therefore each joint becomes
a fourth-order system with the state given by, for example,
the position and velocity of both rotor and link. In this way,
for the entire robot, the following model structure based on
Spong (1987) is assumed:

MMM(qqq)q̈qq + CCC(qqq, q̇qq)q̇qq + ggg(qqq) = τττ + DDDKKK−1τ̇ττ + τττ ext (1)

BBBθ̈θθ + τττ + DDDKKK−1τ̇ττ = τττm − τττ f (2)

τττ = KKK(θθθ − qqq) (3)

The vectors qqq ∈ R
n and θθθ ∈ R

n contain the link and motor
side positions, respectively. The first equation contains, on
the left-hand side, the well known rigid body dynamics with
MMM(qqq) ∈ R

n×n ,CCC(qqq, q̇qq)q̇qq, andggg(qqq) ∈ R
n being the inertia ma-

trix, the centripetal and Coriolis vector, and the gravity vector.
In contrast to the rigid case, on the right-hand side one has
the torque from the spring-damper system, denoted also by τττ a

later on in the paperτττ a = τττ +DDDKKK−1τ̇ττ = KKK(θθθ−qqq)+DDD(θ̇θθ−q̇qq).
The vector τττ ∈ R

n represents the spring torques as defined by
(3) and τττ ext ∈ R

n are the external torques acting on the robot.
KKK = diag(ki) ∈ R

n×n is the diagonal, positive definite joint
stiffness matrix, andDDD = diag(di) ∈ R

n×n is the diagonal pos-
itive semi-definite joint damping matrix. The spring-damper
torque is related to the motor torque τττm ∈ R

n through another
second-order equation (2), involving the diagonal, positive
definite motor inertia matrix BBB = diag(bi) ∈ R

n×n.

1. In the references cited above, only motor position feedback is considered.

The vector τττ f ∈ R
n consists of the friction torques. The

analysis in this paper focuses on the effects of joint flexibility
and thereforeτττ f will be neglected in the following. In practice
it is of course important to add also a friction compensation
part to the controller in order to reduce the remaining friction
to a minimum (torque feedback already reduces the friction
effect considerably, as will become clear in Section 3.2). For
the DLR robots, we use a model-based friction compensation
(Albu-Schaffer 2001) and/or a motor disturbance observer.
The state vector (θθθ, θ̇θθ, τττ , τ̇ττ ) used for control throughout the
paper contains the motor positions θθθ and the joint torques τττ ,
both directly measured by sensors, as well as their first deriva-
tives θ̇θθ and τ̇ττ , which are computed numerically. Of course, in
the absence of a torque sensor, the link side position qqq and
its derivative q̇qq can be used instead2, leading to the state vec-
tor (θθθ, θ̇θθ,qqq, q̇qq) which is linearly related to the previous one
trough (3).

2.2. Framework Overview

The purpose of this paper is to introduce a novel control design
and analysis framework, which allows the realization of var-
ious control structures known from the rigid robot case (such
as position, force, impedance control) in the presence of sig-
nificant elasticity in the joints. The viability and robustness of
the methods for a large range of applications is thereby a major
requirement. The framework is constructed from a passivity
control perspective, by giving a simple and intuitive physical
interpretation in terms of energy shaping to the feedback of
the different state vector components.

• A physical interpretation of the joint torque feedback
loop is given as the shaping of the motor inertia.

• The feedback of the motor position can be regarded as
shaping of potential energy.

These interpretations enable a new view of a linear state feed-
back controller with gravity compensation as introduced in
Section 3.1 and enables a generalization in several directions.
First, it allows the extension to variable control gains, as de-
scribed in Section 3.4, in order to increase control perfor-
mance. Moreover, it allows the implementation of impedance
control in Cartesian coordinates (Section 4), by changing only
the nature of the desired (shaped) potential energy through the
motor position feedback and expressing it in Cartesian coor-
dinates, as done in the rigid robot case. The torque loop can
be independently designed in this case (as well as in the joint
impedance control case) for maximal performance in terms
of reducing motor inertia and friction. For all proposed con-
trollers, a Lyapunov stability analysis can be done easily using
storage functions from the passivity representation as candi-
date Lyapunov functions. In order to preserve passivity, the

2. However, an accurate value of the torque is crucial for controller perfor-
mance and its estimation through (3) can be unsatisfactory in the presence of
small offsets or other calibration errors of the position sensors.

 © 2007 Multimedia Archives. All rights reserved. Not for commercial use or unauthorized distribution.
 at DLR-Deutsches Zentrum fLuft-u on January 18, 2007 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


26 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2007

potential energy is shaped based only on motor position. Spe-
cial effort is therefore needed in order to exactly satisfy the
control specifications expressed in terms of the link position
(such as desired tip position or Cartesian elasticity). This is
reflected in the more involved computations needed for im-
plementation of the Cartesian controller from Section 4. The
main idea is to define an auxiliary position variable which is
a function of θθθ only (in order to preserve passivity), but is
statically equivalent to the link side position qqq. After under-
standing this idea, the reader may skip at first reading the rest
of the section containing the technical details and the passivity
analysis and continue with the experimental part.

3. Joint Level Torque and Position Control

In the following we summarize the approaches adopted for
DLR robots for joint level torque and position control and
give the unifying, passivity-based view of the problem, which
allows further generalization to Cartesian impedance control.

3.1. Passivity-based Joint Position Control

The starting point in the control development was a joint state
feedback controller for regulation tasks given by

τττm = −KKKPθ̃θθ − KKKDθ̇θθ

+KKKT (ggg(qqqd) − τττ) − KKKSτ̇ττ + ggg(qqqd) (4)

with KKKP , KKKD, KKKT , and KKKS being positive definite diagonal
matrices and with a gravity compensation ggg(qqqd) based on the
desired position qqqd . The error θ̃θθ = θθθ − θθθd is computed using
a desired value

θθθd = qqqd + KKK−1ggg(qqqd), (5)

This constitutes an extension of the PD controller from Tomei
(1991) to a full state feedback. Within this section, free motion
of the robot is assumed, i.e., τττ ext = 000. Under some conditions
related to the minimal eigenvalues of KKKP and KKKD (see Sec-
tion 3.3 and Appendix B), the controller together with the
motor side dynamics (2) can be shown to provide a passive
subsystem, which in turn leads to passivity of the entire closed
loop system3 (Albu-Schäffer et al. 2001;Albu-Schäffer 2002),
as sketched in Figure 2. In Albu-Schäffer (2002) it was ex-
emplified that by adequately designing the controller gains
KKKP , KKKD, KKKT , and KKKS , the structure can be used to imple-
ment a torque, position or impedance controller on joint level
(see also Section 3.3). The controller is reformulated and an-
alyzed in the next section in order to allow generalization to
the Cartesian case.

3. Passivity is given in this case with respect to the input–output pair {τττa, q̇qq}.

3.2. Joint Torque Control: Shaping the Actuator Kinetic
Energy

In order simplify the analysis and to be able to generalize the
joint level approach also to Cartesian coordinates, the idea of
interpreting the joint torque feedback as the shaping of the
motor inertia plays a central role (Ott et al. 2004). It enables
one to use directly the torque feedback within the passiv-
ity framework and conceptually divides the controller design
into two steps, one related to torque feedback and the other to
position feedback. However, in contrast to singular perturba-
tion approaches, the analysis does not require the two loops
to have different time scales, which would require very high
bandwidth for the torque controller in order to achieve good
overall performance.

Consider a torque feedback of the form

τττm = BBBBBB−1
θ

uuu + (III − BBBBBB−1
θ

)(τττ + DDDKKK−1τ̇ττ ). (6)

Herein uuu ∈ R
n is an intermediate control input and BBBθ is

a diagonal, positive definite matrix, such that bθ i < bi . The
torque controller leads together with (2) to

BBBθθ̈θθ + τττ + DDDKKK−1τ̇ττ = uuu (7)

Comparing (2) with (7) it is clear that the effect of the torque
controller is that of reducing the motor inertia to BBBθ for the
new subsystem with input uuu.4

In order to be able to effectively damp the torque dynamics,
(6) can be replaced by a more general version of the torque
controller:

τττm = BBBBBB−1
θ

uuu + τττ + DDDKKK−1τ̇ττ (8)

−BBBBBB−1
θ

(τττ + DDDsKKK
−1τ̇ττ )

whereDDDs is an independent diagonal gain matrix for the torque
derivative feedback. This is basically a PD torque controller,
written in a form which reflects the given physical interpreta-
tion. In this case, the new motor dynamics is given by

BBBθθ̈θθ + τττ + DDDsKKK
−1τ̇ττ = uuu (9)

Usual values for the ratio BBBBBB−1
θ

for the DLR lightweight
robots are between 4 and 6 for a compliant behaviour, while
lower values are chosen, e.g., for position control, when high
stiffness is desired. This ratio (and thus the achievable band-
width of the torque controller) is determined mainly by the
noise level of the torque sensors5. Notice that the motor fric-
tion is also reduced by the torque feedback, the term τττ f from
(2) would appear in this equation scaled down by BBBθBBB

−1.

4. The controller also scales down by the factor BBBθBBB
−1 any perturbation

torque acting on motor side (e.g., the friction torque).
5. Notice, however, that for the flexible joint case, the torque represents a
state of the system and is therefore quite smooth, such that a simple first-
order low pass filter with cut-off frequency 250 Hz can be used for the DLR
robots.
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Fig. 2. Representation of the position controlled robot as a connection of passive blocks. The spring torque τττ is measured by
a torque sensor and the motor position θθθ by an encoder. The derivatives are obtained by numerical differentiation.

3.3. Motor Position-based Feedback: Shaping the Potential
Energy

First notice that for the control at joint level, a controller of
the form

uuu = −KKKθθ̃θθ − DDDθθ̇θθ + ggg(qqqd) (10)

with θ̃θθ = θθθ − θθθd and KKKθ , DDDθ being positive definite gain
matrices, is passive with respect to the input–output pair
{uuu, θ̇θθ}. Taking into consideration the passivity of all other
subsystems, this enables the conclusion of passivity for the
entire closed loop system. Actually, the controller (6), (10)
can be shown to be equivalent to the formulation (4), with
KKKP = BBBBBB−1

θ
KKKθ , KKKD = BBBBBB−1

θ
DDDθ , KKKT = BBBBBB−1

θ
− III , and

KKKS = (BBBBBB−1
θ

− III )DDDKKK−1. For the torque controller (8) one
has in turn KKKS = (BBBBBB−1

θ
DDDs − DDD)KKK−1. Based on these pas-

sivity properties, asymptotic stability can be shown for the
regulation case if some minimal bounds on KKKθ (and also DDDθ

for controller (6)) are satisfied, as described in Appendix A.
The controller provides a shaping of the potential energy

based only on the motor position θθθ , such that qqqd becomes
the only equilibrium point of the potential function. This idea
will be extended to the Cartesian impedance control case in
Section 4.

3.4. Design of Variable Control Gains

As shown in Appendix A, the Lyapunov function for the po-
sition controller is given by

V (www,ẇww) = 1

2
(q̇qq

T
MMM(qqq)q̇qq + θ̇θθ

T
BBBθθ̇θθ) (11)

+UP (www) − UP (wwwd) − ∂UP (wwwd)

∂www
(www − wwwd),

with www = (θθθ,qqq) and with UP (www) = U(www) + Us(θθθ) being the
sum of the potential energies of the robot and of the controller.
The derivative of V (www,ẇww) along the system trajectories in the
case of the controller (8) is given (see Appendix A)

V̇1(ẇww) = −θ̇θθ
T
DDDθθ̇θθ − (θ̇θθ − q̇qq)TDDD(θ̇θθ − q̇qq) +

θ̇θθ
T
(DDD − DDDs)(θ̇θθ − q̇qq). (12)

Since the linearization of the system around a desired equi-
librium point wwwd is controllable, a linear full state feedback
controller (with gains that can be chosen to arbitrarily as-
sign eigenvalues for the linearized plant around the desired
configuration, at least in principle) is indeed often used in
practice in order to increase the local performance of stan-
dard (PD) controllers for robots with joint flexibility (Lückel
et al. 1993; Stelter 2001). For constant control gains, the anal-
ysis done above legitimates this choice also from the point of
view of global asymptotic stabilization. However, in order to
further increase performance, the gains of the controller are
sometimes chosen based on gain scheduling, using the actual
motor configuration θθθ as a scheduling variable. The design of
the gains then tries to satisfy the following criteria:

• Minimizing the response time for a given robot config-
uration

• Provide the desired (well damped) transient behavior

• Limit the control gains to certain (experimentally deter-
mined) bounds KKKimin < KKKi < KKKimax, which are influ-
enced by the signal-noise level, unmodeled dynamics,
actuator saturation, friction uncertainty, etc.

 © 2007 Multimedia Archives. All rights reserved. Not for commercial use or unauthorized distribution.
 at DLR-Deutsches Zentrum fLuft-u on January 18, 2007 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


28 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2007

The stability analysis can easily be extended in order to pro-
vide a theoretically sound framework also for the case of vari-
able gains. For this, first notice that the matrices DDDθ and DDDs

enter only V̇ (www,ẇww) and not V (www,ẇww). Consequently the anal-
ysis is valid without modifications if these gains are dependent
on the motor side position, i.e., DDDθ(θθθ), and DDDs(θθθ). Moreover,
notice that BBBθ can be chosen state dependent, as BBBθ(θθθ), if the
controller contains an additional term ḂBBθ(θθθ)θ̇θθ . This term can
be seen in analogy to the centripetal and Coriolis vector in
(1). It is needed in order to cancel in V̇ (www,ẇww) the term re-
lated to the variation of the virtual motor side inertia BBBθ(θθθ).
Finally, also a configuration dependent gain KKKθ can be cho-
sen if KKKθ(θθθ)θθθ is integrable6. This, however, is difficult to be
satisfied for gains resulting from a general linear design. In
conclusion, a possible design procedure is to define a con-
troller of the form

τττm = BBBBBB−1
θ

(θθθ)uuu + τττ + DDDKKK−1τ̇ττ (13)

−BBBBBB−1
θ

(θθθ)
[
(τττ + DDDs(θθθ)KKK−1τ̇ττ ) + ḂBBθ(θθθ)θ̇θθ

]
uuu = −KKKθθ̃θθ − DDDθ(θθθ)θ̇θθ + ggg(qqqd) (14)

where only KKKθ is constant and all the other gains are
state dependent, resulting from a classical linear design.
Then the Lyapunov function as well as its derivative re-
main unchanged, except for the replacement of KKKθ,BBBθ,DDDs

by KKKθ(θθθ),BBBθ(θθθ),DDDs(θθθ).
Alternatively,KKKθθ̃θθ can be replaced in (14) by the derivative

of any potential function Usθ(θθθ) which leads to an unique
equilibrium at θθθd :

uuu = −∂Usθ (θθθ)

∂θθθ
− DDDθ(θθθ)θ̇θθ + ggg(qqqd) (15)

3.5. Tracking Performance

In De Luca (2000) it was mentioned that a simple motor side
PD controller can be used together with appropriate feed-
forward terms also for trajectory tracking. The position con-
troller developed above can be applied in exactly the same
way, having the advantage of additionally providing an im-
proved disturbance rejection performance due to the torque
feedback.

Using (1) with τττ ext = 000, and (3), the desired motor position
θθθd can be obtained from the relations

KKKθθθd + DDDθ̇θθd = KKKqqqd + DDDq̇qqd + τττ ad, (16)

τττ ad = MMM(qqqd)q̈qqd + CCC(qqqd, q̇qqd)q̇qqd + ggg(qqqd) (17)

Since DDD and KKK are diagonal matrices, θθθd can be computed
for each joint separately and can be implemented online as
linear filtering after computing τττ ad . From (6), (7) evaluated

6. Then Us is given by this integral, which defines a potential for the vector
field KKKθ (θθθ)θθθ such that ∂Us (θθθ)

∂θθθ
= KKKθ (θθθ)θθθ .

along the desired motion, the feed-forward command uuuff can
be computed as

uuuff = BBBθθ̈θθd + τττ ad . (18)

The feedforward command includes through θ̈θθd the deriva-
tives of qqqd up to fourth order, which therefore have to be
provided as smooth functions of time. In this case, (14) is
replaced by

uuu = −KKKθθ̃θθ − DDDθ(θθθ)
˙̃
θθθ + uuuff, (19)

with ˙̃
θθθ = θ̇θθ − θ̇θθd . Only local stability results along the tra-

jectory can be shown for such a controller. This is, however,
practically sufficient for trajectory tracking with high gains
KKKθ and initial tracking error close to zero. For global track-
ing convergence, a controller has to include also the higher
derivatives of qqq, as mentioned in Section 1.

4. Impedance Control

While the structure presented so far can be effectively used for
position control, it has two major drawbacks when used for
impedance control. First, as mentioned in Appendix A, some
minimal values for KKKθ (or KKKP ) have to be ensured in order to
prove the asymptotic stability. This is related to the fact that the
gravity compensation is done based on the desired position.
For impedance control, however, the desired stiffness may be
arbitrarily close to zero, making gravity compensation based
on desired position not meaningful. Second, the desired stiff-
ness relation can be satisfied only locally by controllers of the
type given by (10), due to additional variation of the gravity
term and, in the Cartesian version, of the Jacobian. In order
to see this more clearly, consider the equilibrium equations7

KKK(θθθ − qqq) = ggg(qqq) − τττ ext

KKK(θθθ − qqq) + KKKθθ̃θθ = 000

of the robot with the controller (10). By eliminating θθθ , one
obtains

τττ ext = ggg(qqq) + KKK(KKK + KKKθ)
−1KKKθ(qqq − θθθd)

The output stiffnessKKKq which results for this controller is thus

KKKq = ∂τττ ext

∂qqq
= ∂ggg(qqq)

∂qqq
+ KKK(KKK + KKKθ)

−1KKKθ, (20)

and is hence position dependent. In the next subsection an
approach is presented, which overcomes the mentioned short-
comings. The main idea is to design the outer loop by intro-
ducing a new control variable q̄qq, which is a function of the

7. Obtained for a constant τττ ext from (1), (2), (3), (7), (10) by setting all
derivatives to zero.
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collocated (motor) position θθθ only, but is equal to the noncol-
located position qqq (link side) in every static configuration. An
iterative computation method based on the contraction map-
ping theorem is used to calculate this variable. The outer loop
controller designed in this way can be shown to be passive,
while exactly fulfilling all the steady state requirements for
the system. These include not only the desired equilibrium
position, but also the exact stiffness relationship between the
end-effector position and the external force. The approach can
be interpreted as a shaping of the potential energy of the robot.

4.1. The Cartesian Case: Implementing Exact Desired
Stiffness

In this section, the more general case of Cartesian impedance
control is treated. In contrary to position or force control in
which the control goal is to follow a given setpoint (for po-
sition or force respectively), the goal of impedance control is
to achieve a closed loop behavior which resembles a given
impedance behavior (Hogan 1985). The analysis treats a de-
sired impedance which is characterized by a desired stiffness
and damping behavior, while link side inertia shaping is not
treated. This type of impedance control is sometimes also re-
ferred to as compliance control. The joint level impedance
controller can be easily derived from it. In analogy to rigid
robot impedance control (Hogan 1985), a first choice for the
outer loop controller would be:

uuu = −JJJ (qqq)T (KKKxx̃xx(qqq) + DDDxẋxx(qqq)) + ggg(qqq) , (21)

x̃xx(qqq) = fff (qqq) − xxxd. (22)

Herein, xxxd is the constant desired end-effector pose and
xxx(qqq) = fff (qqq) is the end-effector pose computed by the direct
kinematics map fff . JJJ (qqq) = ∂fff (qqq)

∂qqq
is the manipulator Jacobian.

KKKx and DDDx are positive definite matrices for the desired stiff-
ness and damping. The equilibrium conditions are then given
by8

KKK(θθθ 0 − qqq0) = ggg(qqq0) − JJJ (qqq0)
TFFF ext (23)

KKK(θθθ 0 − qqq0) + JJJ (qqq0)
TKKKxx̃xx(qqq0) = ggg(qqq0), (24)

where the relation τττ ext = JJJ (qqq0)
TFFF ext between the external

joint torque and the external force FFF ext acting from the envi-
ronment on the robot end-effector was used. Obviously, this
leads to the desired stiffness relation FFF ext = KKKxx̃xx in any equi-
librium position as long as JJJ (qqq0) has full column rank.

It is well known that the system (1) is passive with respect
to the input–output pair {τττ a +τττ ext, q̇qq}. This can be shown with
the storage function Sq = 1

2
q̇qq

T
MMM(qqq)q̇qq+Vg(qqq), where Vg(qqq) is

a potential function forggg(qqq). In order to ensure the passivity of
the complete system, we are now looking for a control law for
uuu which determines (7) to be passive in {q̇qq, −τττ a}. Obviously,
(21) does not satisfy the required passivity condition. The

8. θθθ0 and qqq0 stand for the equilibrium values of θθθ and qqq.

usual solution adopted in Tomei (1991), Albu-Achäffer et al.
(2001), Zollo et al. (2005), Ott et al. (2004), Albu-Schäffer
et al. (2004b) in order to ensure the passivity in {q̇qq, −τττ a} is
to chose uuu as a function of θθθ and its derivative only. Then
the controller is passive with respect to {θ̇θθ, −uuu} and is further
connected to the passive motor side dynamics, thus satisfying
the desired property9. The basic idea for the solution proposed
in this paper uses the fact that, under some mild conditions,
there is a one to one mappingθθθ 0 = hhh(qqq0) at equilibrium points
(in our case through (24)) between θθθ 0 and qqq0:

θθθ 0 = hhh(qqq0) = qqq0 + KKK−1lll(qqq0), (25)

with lll(qqq0) = −JJJ (qqq0)
TKKKxx̃xx(qqq0) + ggg(qqq0) . (26)

The proposed solution consists in replacing qqq in (21) with
its static equivalent q̄qq(θθθ) = hhh−1(θθθ), which is based only on the
motor position. One obtainins the following controller, which
is statically equivalent to (21):

uuu = −JJJ (q̄qq)T (KKKxx̃xx(q̄qq) + DDDxJJJ (q̄qq)θ̇θθ) + ggg(q̄qq) (27)

x̃xx(q̄qq) = fff (q̄qq) − xxxd. (28)

Since q̄qq(θθθ 0) = qqq0 holds at rest, it follows that the equilibrium
(23),(24) and thus the desired static relation FFF ext = KKKxx̃xx(qqq0)

is still valid for this new controller. This basic idea was intro-
duced in Ott et al (2004) and Albu-Schäffer et al. (2004) for
the case of gravity compensation only and was generalized in
Albu-Schäffer (2004a) in order to provide an exact link side
Cartesian stiffness. The closed loop dynamics of the system
results from (1), (7), and (27):

MMM(qqq)q̈qq + CCC(qqq, q̇qq)q̇qq + ggg(qqq) = τττ a + τττ ext (29)

BBBθθ̈θθ − lll(q̄qq) + JJJ (q̄qq)TDDDxJJJ (q̄qq)θ̇θθ + τττ a = 000 (30)

REMARK 1. While in general the inverse function hhh−1 can-
not be computed analytically, for a given θθθ it is possible to
approximate the value q̄qq = hhh−1(θθθ) with arbitrary accuracy by
iteration in the case that the mappingTTT (qqq) := θθθ−KKK−1lll(qqq) is a
contraction. The mapping TTT (qqq) has then a unique fixed-point
qqq∗ = TTT (qqq∗) = q̄qq. The iteration

q̂qqn+1 = TTT (q̂qqn) (31)

converges thus for every starting point10 to this fixed-
point, as follows from the contraction mapping theorem (see
Vidyasagar 1978):

lim
n→∞

q̂qqn = qqq∗ = q̄qq . (32)

9. In order to have an overview of the causality of the various blocks as well as
on the signs of the involved input–output pairs, a first short look at Figure 3,
displaying the final controller structure, might be useful.
10. E.g., one can choose q̂qq0 = θθθ or alternatively q̂qq0 equal to the result of the
iteration during the previous control cycle.
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In order for TTT (qqq) to be a contraction, it is sufficient to show
that there exists an α ∈ R satisfying:

∣∣∣∣
∣∣∣∣∂lll(qqq)

∂qqq

∣∣∣∣
∣∣∣∣ ≤ α <

1

||KKK−1|| ∀qqq ∈ R
n. (33)

This implies the following inequality:

||lll(qqq1) − lll(qqq2)|| ≤ α||qqq1 − qqq2||, ∀qqq1,qqq2 ∈ R
n (34)

As a consequence of (34) it follows that

||TTT 1(qqq1) − TTT 1(qqq2)|| ≤ ||KKK−1||||lll(qqq1) − lll(qqq2)||
< ||qqq1 − qqq2||

The condition (33) can always be fulfilled for a sufficiently
small ||KKKx ||.A physical interpretation can be given as follows:
ignoring gravity, the condition states that the desired Cartesian
stiffness, transformed to joint space (Chen and Kao 2000) may
not exceed the joint stiffness. This is intuitive, since the overall
stiffness results from the serial interconnection of the joint
stiffness and the controller stiffness and is therefore lower than
any of the two. On the other hand, in the absence of external
forces, the condition states that the joint stiffness should be
high enough to sustain the robot in the gravity field if the
motor is fixed, which is rather self-evident. In the following
it is therefore assumed that q̄qq is known exactly. In practice,
good results are obtained by the first or second iteration step.
In particular notice that by a first-order approximation with
q̂qq0 = qqqd one would obtain the second version of the controller
from Zollo et al. (2005).

REMARK 2. From the remark above it follows that in order
to preserve the passivity (and hence the robustness) of the
presented control approach, the physical joint stiffness is an
upper bound for the achievable closed loop stiffness. There-
fore, this controller is not well suited to systems which are
designed to be very compliant, such as the series elastic ac-
tuators (Pratt and Williamson 1995) for which an increase of
the total stiffness has to be accomplished by control. However,
the method is a good choice for lightweight robotic structures
with cable-driven actuators or harmonic drive gears.

4.2. Comparison with the Joint Impedance Control Version

For the joint impedance control case, the desired equilibrium
equations (23), (24) reduce to

KKK(θθθ 0 − qqq0) = ggg(qqq0) − τττ ext (35)

KKK(θθθ 0 − qqq0) + KKKqd
q̃qq0 = ggg(qqq0), (36)

where KKKqd
is the desired link side joint stiffness11 and q̃qq0 =

qqq−qqqd . The second relation provides again an implicit equation

11. The desired Cartesian stiffness KKKx is now replaced by KKKqd .

in qqq. It can be solved numerically in order to obtain q̄qq(θθθ) if a
condition of the type (33) is satisfied, with

lll1(qqq0) = −KKKqd
q̃qq0 + ggg(qqq0) . (37)

The resulting controller, namely

uuu = −KKKqd
(q̄qq(θθθ) − qqqd) − DDDθθ̇θθ + ggg(q̄qq(θθθ)), (38)

is an extension of (10), where online gravity compensation
was used instead of a compensation based on the desired po-
sition and which now exactly implements the desires stiffness
matrix KKKqd

.

4.3. Passivity Analysis of the Cartesian Impedance
Controller

The passivity of (30) with respect to {q̇qq, −τττ a} can be shown
using the following storage function:

Sθ = 1

2
θ̇θθ

T
BBBθθ̇θθ + 1

2
(θθθ − qqq)TKKK(θθθ − qqq) − Vl̄(θθθ), (39)

where Vl̄(θθθ) is the potential function for l̄ll(θθθ) = lll(q̄qq(θθθ)). It
should be mentioned that the potential function for lll(q̄qq(θθθ))

with θθθ as an argument is required in (39), satisfying ∂Vl̄ (θθθ)

∂θθθ
=

l̄ll(θθθ)T = lll(q̄qq(θθθ))T . A potential function Vl(q̄qq) in q̄qq, (with
∂Vl (q̄qq)

∂q̄qq
= lll(q̄qq)T ) can easily be found:

Vl(q̄qq) = −1

2
x̃xx

T
(q̄qq)KKKxx̃xx(q̄qq) + Vg(q̄qq) . (40)

In Albu-Schäffer et al. (2004a) it has been shown that the
required potential function Vl̄(θθθ) is related to Vl(q̄qq) through

Vl̄(θθθ) = Vl(q̄qq(θθθ)) + 1

2
lllT (q̄qq(θθθ))KKK−1lll(q̄qq(θθθ)). (41)

For robots with rotational joints, Vg(q̄qq) is upper bounded.
By substituting (41) and (40) into (39), it follows that
Sθ is bounded from below since all other terms are posi-
tive (quadratic). Thus Sθ represents an appropriate storage
function.

The time derivative of (39) along the solutions of (30) is:

Ṡθ = −θ̇θθ
T
JJJ T (q̄qq)DDDxJJJ (q̄qq)θ̇θθ − (θ̇θθ − q̇qq)TDDD(θ̇θθ − q̇qq)

−q̇qq
T
τττ a.

The last term represents the exchanged power of the subsys-
tem and the other terms are negative definite dissipation terms.
This shows that the subsystem is indeed passive with respect
to {q̇qq, −τττ a}. If the robot is contacting an environment which
is also passive (with respect to {q̇qq, −τττ ext}), then the passiv-
ity of the entire system is given as a parallel and feedback
interconnection of passive subsystems (Figure 3).

As already mentioned, the results of the passivity analy-
sis have important implications for the robot interaction with
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Fig. 3. Representation of the Cartesian impedance controller as parallel and feedback interconnection of passive systems.

the environment. Without going into details it should be men-
tioned that the storage functions from the passivity analysis
can be used also as a Lyapunov function for the proof of
asymptotic stability in the case of free motion (Albu-Schäffer
et al. 2004a) for a non-redundant manipulator. For redundant
manipulators such as the DLR lightweight robots all the pas-
sivity properties are valid, while only convergence of the tip
position is ensured by the Cartesian controller, the null-space
position can be arbitrary at rest. In order to ensure asymptotic
convergence in the sense of Lyapunov to a certain joint con-
figuration, an additional null-space stiffness has to be added
(Albu-Schäffer et al. 2003).

A last comment on the type of resulting convergence prop-
erties should be made. While for the joint impedance control
case global convergence results can be obtained, only local
statements can be made for the Cartesian case. One reason is
the fact that the contraction condition (33) is satisfied glob-
ally for lll1 if the joint stiffness is higher than the (bounded)
Hessian of the gravity potential energy, while it can be satis-
fied only locally for lll. A second reason is more fundamental
and is related to the robot kinematics properties. Even in the
non-redundant, nonsingular case, the Cartesian coordinates
describe the configuration of the robot only locally (Burdick
1995). A cuspidal robot (Wenger 1998) can generally con-
verge to the same Cartesian pose but it may reach it with
(e.g., two) different joint configurations even without passing
a singularity during such a reconfiguration.

4.4. Cartesian Force Command, Redundancy and
Singularity Treatment

The way in which a Cartesian force can be implemented within
this framework (e.g., for Cartesian hybrid force-position con-
trol) should be mentioned here for sake of completeness. A

desired Cartesian force FFF d can be achieved not only by using
impedance control and commanding an appropriate desired
point beyond the contact surface (Hogan 1985), but also by
setting the desired Cartesian stiffness to zero in the given di-
rection, commanding a desired torque τττ d = JJJ T (q̄qq)FFF d and
adding it to uuu in (27). Then the local torque controller is used
to compensate for disturbances such as friction instead of a
Cartesian force controller.

Based on the torque interface, well known methods used
to deal with singularities and redundancy can be adapted
from the rigid case, e.g., from Khatib (1995). A redundancy
treatment within the singular perturbation framework was de-
scribed in Albu-Schäffer et al. (2003).

5. Experimental Evaluation

First, some experimental results regarding the position con-
trol are given for a rest to rest movement of joint 2 of the
LWR III, with a rectangular velocity profile. Figure 4 shows
a comparison between the controller defined by (19), (8) and
two PD controllers, which are obtained by setting BBBθ = BBB,
i.e., setting the feedback gains KKKT and KKKS for the torque
and the torque derivative to zero and using only the posi-
tion and velocity feedback. The higher order derivatives of
the desired trajectory in (18) have to be omitted due to the
discontinuity of the desired velocity signal. In order to have
a direct correspondence to the PD controllers, all gains will
be also listed in the equivalent notations of (4), i.e., using
(KKKP ,KKKD,KKKT ,KKKS) instead of (BBBθ,DDDs,KKKθ,DDDθ ), see also Sec-
tion 3.3 for the correspondence. The parameters of the joint are
b2 = 3.933 kgm2, k2 = 21900 N/m, d2 = 9.62 Nm s/rad
and in the considered arm configuration the diagonal term of
the mass matrix is m22 = 7.45 kgm2. The control gains used

 © 2007 Multimedia Archives. All rights reserved. Not for commercial use or unauthorized distribution.
 at DLR-Deutsches Zentrum fLuft-u on January 18, 2007 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


32 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2007

3 3.5 4 4.5 5
−100

−50

0

50

100

to
rq

ue
 [N

m
]

 

 

3 3.5 4 4.5 5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

m
ot

or
 v

el
oc

ity
 [r

ad
/s

]

 

 

3 3.5 4 4.5 5
−0.01

−0.005

0

0.005

0.01

lin
k 

po
si

tio
n 

er
ro

r 
[r

ad
]

time [s]

a)

 

 

gravity torque
full state feedback
PD control

commanded
full state feedback
PD control

full state feedback
PD control

3 3.5 4 4.5 5
−100

−50

0

50

to
rq

ue
 [N

m
]

 

 

3 3.5 4 4.5 5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

m
ot

or
 v

el
oc

ity
 [r

ad
/s

]

 

 

3 3.5 4 4.5 5
−0.01

−0.005

0

0.005

0.01

0.015

lin
k 

po
si

tio
n 

er
ro

r 
[r

ad
]

time [s]

b)

 

 

gravity torque
full state feedback
PD control

commanded
full state feedback
PD control

full state feedback
PD control

Fig. 4. PD versus state feedback control. Left (a): the gains of the PD controller are identical to the position and velocity
feedback gains of the state feedback controller. The PD controlled robot exhibits oscillations. Right (b): The gains of the PD
controller are reduced, such that both controllers have the same link side stiffness. The PD controller has higher position
errors and still some oscillations on the torque signal.
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Table 1. Gains for the Position Controllers
KT KS KP KD Kθ Dθ

State feedback 2.0 0.01 12000 811.0 4000 270.3
PD from Fig. 4(a) 0.0 0.0 12000 811.0 12000 811.0
PD from Fig. 4(b) 0.0 0.0 4000 270.3 4000 270.3

in the experiments are listed in Table 1. The gains KKKP and KKKD

of the PD controller in Figure 4(a) are the same as for the state
feedback controller. The position error is in this case similar,
but the PD controlled moves with unacceptable oscillations,
as it can be observed on the torque signal. In Figure 4(b), the
position feedback for the PD controller is decreased in order
to achieve the same link side stiffness, given by (20), as for
the state feedback controller. It can be easily verified, that in
this case both controllers have the same values for KKKθ and
DDDθ . The response times of the state feedback controller and
of the PD controller from Figure 4(b) are similar, but for the
PD controller the position error is considerably larger and the
oscillations are still present on the torque signal at the end of
the trajectory.

Figure 5 compares a state feedback controller with fixed
gains with a variable gain controller on the first axis. During
this experiment, the second axis was moved from 90.0 deg
to 0.0 deg, causing a continuous decrease of the link inertia
for the first axis from 10.277 kgm2 to 0.1 kgm2. Although the
fixed gain controller proves to work surprisingly well, one
can achieve higher bandwidth for low inertia by varying the
gains, as described in Section 3.4. In this way, the maximal
available motor torque is better exploited.

A typical impact experiment with the 7-dof DLR-
lightweight robot II is described next, in order to illustrate
the performance of the Cartesian impedance controller. For
the experiment a diagonal form of the Cartesian stiffness ma-
trix KKKx , with the values of Table 2, was chosen. In the ex-
periment a desired trajectory zd(t) along the vertical z-axis of
the end-effector frame was commanded such that the robot
hit a wooden surface. During this impact, the Cartesian con-
tact force was measured by a 6-dof force-torque sensor12. The
measurement of the external forces was done here only for
the evaluation, but is not needed for implementation of the
controller. Furthermore, the end-effector coordinate z(qqq) was
computed from the link side anglesqqq = θθθ +KKK−1τττ . The result-
ing motion z(qqq) and the contact force Fz of the end-effector in
z-direction are shown in Figure 6. In order to evaluate the re-
sulting impedance relationship, the ratio Fz

zd−z(qqq)
was computed

as an estimation of the stiffness13. This estimation is of course
only valid in the steady state. The result is shown in Figure 7.
At the steady state the estimated stiffness nearly reaches the

12. A JR3-sensor was used, with a first- order analog filter at 500 Hz and no
additional digital filtering.
13. Beginning at time 0.5s, when the robot movement started.

desired value of 4000 N/m. The remaining difference lies in
the range of known stiction effects for this robot.

6. Applications

In this section, some applications based on the presented con-
trollers are shortly presented.

Piston Insertion

Teaching by demonstration is a typical application for
impedance controllers. A practical demonstration was given
with the task of teaching and automatic insertion of a pis-
ton into a motor block. Teaching is realized by guiding the
robot with the human hand (Figure 8). It was initially known
that the axes of the holes in the motor block were vertically
oriented. In the teaching phase, high stiffness components
for the orientations were commanded (150 Nm/rad), while
the translational stiffness was set to zero. This allowed only
translational movements to be demonstrated by the human
operator. In the second phase, the taught trajectory has been
automatically reproduced by the robot. In this phase, high val-
ues were assigned for the translational stiffness (3000 N/m),
while the stiffness for the rotations was low (60 Nm/rad). This
enabled the robot to compensate for the remaining position
errors. For two pistons, the total time for the assembly was
6 s. In this experiment, the assembly was executed automati-
cally four times faster than by the human operator holding the
robot as an input device in the teaching phase (24 s), while
the free-hand execution of the task by a human requires about
4 s (Extension 1). The insertion task has previously been im-
plemented by using an industrial robot and a compliant force-
torque sensor. Despite a well tuned Cartesian force controller,
the insertion process had to be performed much slower, be-
cause of the well known control problems which occur in the
case of hard contacts with conventional robots. Thus, the ad-
vantage of a compliant manipulator with stiffness control in
assembly tasks is obvious.

Wiping the Table

Here the demand for compliant behaviour of the robot arises
from reasons of safety for humans interacting with it, while
the contact with the environment (table) was quite soft due
to the cloth and hence not as challenging as in the case of
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Fig. 5. Fixed gain and variable gain controller for joint 1 of LWRII. The link inertia corresponding to the first joint is
continuously decreased from 10.277 kgm2 to 0.1 kgm2 due to the simultaneous movement of joint 2. The variable gain
controller has faster response time for low inertia.

Table 2. Chosen Values for the Diagonal Cartesian Stiffness Matrix

x y z roll pitch yaw

4000 4000 4000 300 300 300

Nm

rad
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Fig. 8. Teaching phase for the automatic piston insertion
using the lightweight robot II.

piston insertion. The whole task was split into similar guid-
ing and impedance control phases as in the piston insertion
application. Figure 9 and Extension 2 show a demonstration
at the Hannover fair in which the robot’s elbow is deflected
within its null space. Using the Cartesian controller, the robot
continues wiping the table and applying a constant force in
the vertical direction while for the redundant null space mo-
tion the robot has zero stiffness. For these experiments the
Cartesian stiffness matrix was chosen as a diagonal matrix
KKKx = diag[kt , kt , 0, kr , kr , kr] with kt = 2000 N/m for the
translational part and kr = 100 Nm/rad for the rotational part.
The stiffness value corresponding to the vertical motion was
set to zero, and a constant vertical force of −10 N was added
to the Cartesian command instead in order to keep contact
with the table.

Opening a Door

In another service robotics application we used the Cartesian
impedance control of the DLR lightweight robot II in order
to open a door. Here the arm was used in combination with a
mobile platform and the DLR hand II, Figure 10, Extension 3.

In this application, first, the door handle was manipulated
by a sequence of impedance controlled movements in order
to open the door. During these motions the measurements of
the joint torques provided an estimate of the contact force and
thus of the current contact state.

When the mobile platform finally moved through the door
hinge, the door was kept at a distance by impedance control
of the arm. Therefore, instead of using the stiffness term from
Section 4.1, in this stage the desired impedance was based
on an appropriate potential function, which has its minimum

Fig. 9. Table wiping with null space movement.

Fig. 10. DLR lightweight robot II while opening a door.

along a circularly shaped path with respect to a platform fixed
frame. Additionally, the rotational stiffness was set to zero
such that the end-effector orientation automatically adjusted.

7. Conclusions

In this paper, a unified, passivity-based perspective was given
to the problem of position, torque and impedance control of
flexible joint robots, at both joint and Cartesian level. These
methods are especially relevant for lightweight, compliant
robots designed for service applications or for human–robot
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interaction. A physical interpretation was given for the torque
controller and an energy shaping method was designed, which
is based only on motor position (collocated controller), but
which satisfies the static requirements formulated in terms of
the robot end-effector. It is worth noting that the proposed en-
ergy shaping method can be generalized to a broader class of
underactuated Euler–Lagrange systems (Albu-Schäffer et al.
2005), namely to systems that can be stabilized by shaping
the potential energy only. An important advantage of these
passivity-based controllers is the robustness with respect to
uncertainties of the robot or load parameters, as well as to con-
tact situations with unknown but passive environments. These
properties were validated during numerous applications with
the DLR lightweight robots, the newest one involving a hu-
manoid upper body system (Extension 4), as well as crash test
experiments for safety validation (Extension 5).

Appendix A

The well known stability analysis for PD control and gravity
compensation of flexible joint robots (Tomei 1991) directly
applies also to the case of the controller given by (6), (10). The
analysis is given in a new, more general form, which allows
a direct generalization to a wider class of Euler–Lagrange
systems with less control inputs than states. It was shown
in Section 3.2 that the effect of the torque controller is to
reduce the motor inertia and that the dynamics of the torque
controlled robot can be written as

MMM(qqq)q̈qq + CCC(qqq, q̇qq)q̇qq + ggg(qqq) = τττ + DDDKKK−1τ̇ττ + τττ ext (42)

BBBθθ̈θθ + τττ + DDDKKK−1τ̇ττ = uuu. (43)

By using the relation (5), the controller can be written as

uuu = −KKKθθ̃θθ − DDDθθ̇θθ + KKK(θθθd − qqqd). (44)

Therefore the system is equivalent to a flexible joint robot
having the inertia BBBθ and controlled with a PD controller with
gravity compensation. The equilibrium equations correspond-
ing to (42), (43) for τττ ext = 000 are related to the minima of the
potential energy U(θθθ,qqq) = 1

2
(θθθ − qqq)TKKK(θθθ − qqq) + Vg(qqq):

∂U(θθθ,qqq)

∂θθθ
= uuu (45)

∂U(θθθ,qqq)

∂qqq
= 000. (46)

First, notice that the desired motor position θθθd correspond-
ing to a desired link side position qqqd has to satisfy (46), i.e.,
∂U(θθθd ,qqqd )

∂qqq
= 000. This equation can be directly solved forθθθd , lead-

ing to (5). Second, notice that the static part of the controller
(44) can be written as

uuu = ∂U(θθθd,qqqd)

∂θθθ
+ ∂Us(θ̃θθ)

∂θθθ
, (47)

where the first term is compensating for the left side of (45) at

the desired position, while Us(θ̃θθ) = 1
2
θ̃θθ

T

KKKθθ̃θθ is the potential
of the joint controller “spring” and is zero for θθθ = θθθd . By
using the further notation UP (www) = U(www) + Us(θθθ) with www =
(θθθ,qqq), the equilibrium equations of the controlled robot can
be written in the simple form

∂UP (www)

∂www
− ∂UP (wwwd)

∂www
= 000. (48)

Now consider finally the function

VP (www) = UP (www) − UP (wwwd) − ∂UP (wwwd)

∂www
(www − wwwd) (49)

and notice that with this function, the stationary points of the
system satisfy simply

∂VP (www)

∂www
= 000. (50)

It is directly verified that VP (wwwd) = 0 holds and also that the
pointwww = wwwd is an extremal point of VP (www) due to ∂VP (wwwd )

∂www
= 000

and therefore satisfies the system equilibrium equations. If the
Hessian of VP (www), given by

∂2VP (www)

∂www2
=

[
KKK + KKKθ −KKK

−KKK KKK + ∂ggg(qqq)

∂qqq

]
(51)

is positive definite, then wwwd is the only equilibrium point.
This can always be satisfied for high enough gains KKKθ if the
lower-right sub-matrix is positive definite, implying that the
robot is stiff enough to sustain its own weight in the gravity
field. Then, by adding the pseudo14 kinetic energy Tθ(www,ẇww) =
1
2
(q̇qq

T
MMM(qqq)q̇qq + θ̇θθ

T
BBBθθ̇θθ), one obtains a candidate Lyapunov

function

V (www,ẇww) = T (www,ẇww) + VP (www), (52)

which is clearly positive definite and radially unbounded.
Since, after some direct calculations one obtains

V̇ (ẇww) = −θ̇θθ
T
DDDθθ̇θθ − (θ̇θθ − q̇qq)TDDD(θ̇θθ − q̇qq), (53)

which is always negative definite in ẇww, asymptotic stability
can be shown using LaSalle’s invariance principle.

If one considers the controller (8) and hence the controlled
motor dynamics (9) instead of (43) the same Lyapunov func-
tion (52) has time derivative given by

V̇1(ẇww) = −θ̇θθ
T
DDDθθ̇θθ − (θ̇θθ − q̇qq)TDDD(θ̇θθ − q̇qq)

+ θ̇θθ
T
(DDD − DDDs)(θ̇θθ − q̇qq). (54)

This time derivative is negative definite if the following con-
dition is fulfilled

DDD >
1

4
(DDD − DDDs)

TDDDθ(DDD − DDDs). (55)

14. BBBθ is used instead of BBB.
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REMARK 3. Notice that the control law (47) and the poten-
tial function (49) can be extended to a more general class of
underactuated systems, for which there exists a one to one
relation between the directly actuated configuration variables
θθθ and the indirectly actuated configurations qqq.

Appendix B: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video Cartesian impedance control is
used for teaching and execu-
tion of piston insertion. For com-
parison, the human execution is
shown.

2 Video Table wiping with simultaneous
null-space movement and force
control in vertical direction.

3 Video Door opening using impedance
control.

4 Video Position control of the new hu-
manoid system Justin.

5 Video Crash test experiments for safety
validation1

1These experiments were done together with Sami Haddadin. A

paper describing the experiments is currently in preparation.
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