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Abstract— In this work a novel type of impedance controllers
for flexible joint robots is proposed. As a target impedance a
desired stiffness and damping are considered without inera
shaping. For this problem two controllers of different compexity
are proposed. Both have a cascaded structure with an inner
torque feedback loop and an outer impedance controller. For
the torque feedback, a physical interpretation as a scalingf the
motor inertia is given, which allows to incorporate the torque
feedback into a passivity based analysis. The outer impedan
control law is then designed differently for the two controlers.
In the first approach the stiffness and damping terms and the
gravity compensation term are designed separately. This aar
control loop uses only the motor position and velocity, but ® non-
collocated feedback of the joint torques or link side positns. In
combination with the physical interpretation of torque feedback,
this allows us to give a proof of the asymptotic stability of he
closed-loop system based on the passivity properties of tegstem.
The second control law is a refinement of this approach, in with
the gravity compensation and the stiffness implementatiorare
designed in a combined way. Thereby, a desired static stiféss
relationship is obtained exactly. Additionally, some extasions of
the controller to visco-elastic joints and to Cartesian imgdance
control are given. Finally, some experiments with the DLR
lightweight robots verify the developed controllers and slow the
efficiency of the proposed control approach.

Index Terms— Impedance Control, Compliance Control, Flex-
ible Joint Robots, Passivity Based Control.

I. INTRODUCTION

Andreas Kugi, and Gdtirzinger

controller (formulated in the relevant coordinates). 10][1

was proven that a motor position based PD-controller leads t
a stable closed-loop system also in case of a robot with flexib
joints. Furthermore, in [11] a stability analysis of a hybri
position/force controller for a flexible joint robot withbu
gravitational effects was presented. However, it has been
shown that in practice often only quite limited performance
can be achieved with a restriction to purely motor position
(and velocity) based feedback controllers (without addéti
non-collocated feedback) for the case of a flexible jointotob

In some works a controller structure based on a feedbacleof th
joint torques as well as the link side positions was consider
and it was shown that this leads to an increase of performance
(see, e.g., [12)]). This has also already been verified exyeeri

tally with the DLR lightweight robots [13]. From a theoredlc
point of view this approach usually is justified (for sufficfly

high joint stiffness values) by an approximate analysietas
on the singular perturbation theory. The feedback of thetjoi
torques is therein considered as the control action of a fast
inner control loop which receives its setpoint values from a
outer impedance controller. Furthermore, an integral folhi
approach for designing force and impedance controllers for
flexible joint robots was presented in [14].

In [15], [16] a controller with a complete static state feadb
(position and torque as well as their first derivatives) was i
troduced, for which (analogously to [10]) asymptotic sliapi

. IrEpegan_ce cofntroldcertalnlty)/ is one of the core tﬁrcf}mqums shown based on the passivity properties of the controlle
in the design of modern robot systems, especially for the ., ast to the classical PD-controller the motor irseaind

growing field of service robotics. The basic control objesti

the joint stiffness are included in the same passive block as

of impedance control as formulated in the seminal work %e state feedback controller such that an effective dagngin
Hogan [1] is the achievement of a desired dynamical reIatiqe,qe joint oscillations could be achieved

between external forces and robot movement.

In the present paper a physical interpretation of the torque

The classical approach to impedance control concentrateseQ, qpack is given, which allows to include the inner loop

robotic systems in which the joint elasticity is neglect€dn-
sequently, a straightforward application of these teahesqto

a flexible joint robot usually will not lead to a satisfactor
performanceé In fact the importance of joint elasticity for thef
design of position and tracking controllers has widely be

discussed in the literature [2], [3], [4], [5]. [6], [7], [BI9].

torque controller into a passivity based analysis of the -com

)Plete closed-loop system. It is important to notice that the
c

ontroller being presented is itself not passive due to the
eedback of the joint torque, but it will be shown that the

ontrolled motor dynamics in combination with the torque

feedback are passive. Together with the passive (link side)

In this paper an impedance control law is proposed Whigyiy o4y dynamics the closed-loop system can therefore be

IS designed for flexible joint rpbots. The desired |mpedan<|: presented as a feedback interconnection of passive subsy
is assumed to be a mass-spring-damper system. Furtherm

only the achievement of stiffness and damping is considergfinarmore, in [10], [15] a gravity compensation term loase
herein, w.hlle.th.e !ngrtlal behawor s left unchange_d. Iae_:af on the desired configuration was used. In case of an impedance
arobo_t W'th r|g|d Jomt_s;, such asUffnes_,s and ,damP'”g quay controller this is not appropriate due to the possibly large
could in principle be implemented quite easily with a F)I::e“kdevi(:ltions from the desired configuration which may occur
here in case of a low desired stiffness. In this work a gravity

1in terms of damping out the oscillations due to the flexipiin the joint : ) ! : -
compensation term will be designed which is based on the

as well as absolute positioning accuracy.
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measurement of the motor position and is better suited fator inertiaB of the motof. The elasticity of the transmission
the use in connection with impedance control. The problebetween the rotor and the following likof the robot is
of gravity compensation for flexible joint robots in case ofmodeled in form of a linear spring with stiffnegs.
impedance control was also addressed in some recent paférs goal of the impedance controller is to achieve a desired
[17], [18]. However, in contrast to our approach the gravitgynamical behavior with respect to an external foige,;
compensation term in [17], [18] led to additional lower bdan acting on the link side. In the following it is assumed that
on the admissible desired stiffness. this dynamical behavior is given by a differential equation
Since the controller uses an inner torque feedback loop,ot second order representing a mass-spring-damper system
measurement of the joint torques is needed for the impl&ith massM, desired stiffnesd(y, and desired dampingy.
mentation. This can be achieved either directly by a joiftor a robot with rigid joints this behavior could be realized
torque sensor or indirectly by an additional measurement lof a simple PD-controller with proportional and derivative
the link side position. The DLR lightweight robots [19], [20 controller gains set td{. = Ky and D. = Dy, respectively.
(Fig. 1) are equipped with joint torque sensors in order for a robot with elastic joints instead, no control law can
enable fine manipulation and to enhance the performance wiierce the (fourth order) closed-loop behavior exactly istizh
the robot is in interaction with the environment. Thereforea second order impedance, since for every joint four state
they are ideally suited for the implementation of the présén variables (motor anglé, link side angleq, as well as their
controllers. first derivatives) are present. If one uses a motor positaset
This paper is organized as follows: In Section Il the desigAD-controller in case of a robot with elastic joints, as show
idea is described based on a simplified one-dimensionalinode Fig. 2 for the one-dimensional case, then the resulting
The generalization of the design idea to the complete modahinamics will clearly be influenced also by the joint elastic
of a flexible joint robot is then presented in Section llland the motor inertia. Intuitively speaking, the deviatfoom
Some details on the gravity model are given in Section I\the desired behavior will be less significant when the rotor
In Section V an impedance controller based on a separatertia B becomes smaller and the joint stiffne&sbecomes
design of stiffness implementation and gravity compensatilarger.
is presented. Based on the line of argumentation of the tgravit this point it should be mentioned that the joint stiffness
compensation design an improved controller, which realizealues of atypical flexible joint robot are indeed quite larye
the desired stiffness relation exactly, is presented ini@e¥Il. but cannot be considered as infinite and thus elasticity is no
For the sake of simplicity the complete controller desigd amegligible. By a negative feedback of the joint torguehe
analysis is treated in joint coordinates. The solution, é®v, apparent inertia (of the rotor) can now be scaled down such
is constructed in such a way that the extension to the Cartesihat the closed-loop system reacts to external forégs
impedance control problem is rather straightforward. i8act as if the rotor inertia were smaller. The desired dynamical
VIl is devoted to some further extensions of the controllebehavior can then be approximated the better, the smaber th
namely the case of visco-elastic joints and the generadiz&d apparent rotor inertia is. This approach will be put in ceter
Cartesian impedance control. Finally, Section VIl andteec terms in the following section for the model of a flexible
IX contain experimental results and conclusions. joint robot. Furthermore, a method for compensating thicsta
influence of the sprind< will also be presented. Notice that

Il. DESIGNIDEA % B M
In this section the basic idea of the proposed controller W K 15
design method is described. It is motivated by some simple . W =zt
considerations for a one-dimensional model. N A
Consider at first the model of a single flexible joint as it 5 * T
is sketched in Fig. 1 for the second joint of the DLR- ¢ '
Lightweight-Robot-Ill. The motor torque,, acts here on the 0
q

Fig. 2. Motor position based PD-control of a single joint.irgstorque
feedback the effective motor inertia is scaled down (dagime).

the design approach presented in this paper thus does owt all
to implement a general second order impedance with arpitrar
inertia, but refers to impedance relations with unchangsd |
side inertia. Its robustness properties due to the pag&iaged

Tm K

2The current controlled motors are modeled as ideal torquecss since
the dynamics of the electrical drives are negligible.
3In Fig. 1 represented in a simplified form with a constant tineb/ .

) o 4For the lower joints of the DLR lightweight robots these \elUie in the
Fig. 1. Sketch of the model for a flexible joint robot. range10.000 — 15.000 Nm/rad.
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design make the controller suitable especially for automasn IV. PROPERTIES OF THEGRAVITY POTENTIAL

Enanipulati;)n taskl_s in co?_talgt \INII<th uTknown _enviror;mer)ts. The gravity termg(q) corresponds to the differential of
e oo o e I e e oy e, T et o). L. ()~ (01,100 s
Afell known that the Hessiad (q) := 9%V, (q)/dq> of the
troublesome of course. gravity potential has an upper bound if the robot has only
rotational joint§ [21]. In case that the manipulator instead has
also prismatic joints, it is useful to consider a subgétof the
configuration spac®&™ in which all the prismatic joints are
In this work the so-callededucedflexible joint robot model pounded by their respective workspace bound&ribs this
is assumed as proposed by Spong [2]: subsetQP the existence of an upper bound of the gravity
M(@i+C(q,q)q+g(a) = K(6—q)+1ew:, (1) Hessian is guaranteed. From a physical point of view this
BO+K©O-q) = 7. @ bound is a-priori _not we_II defined since it ;Iearly depend_s on
! the chosen physical units for the translational and ratatio
Hereing € R” represents the vector of thelink side joint coordinates. In order to overcome this problem particular
angles andd € R™ the vector of the corresponding motomatrix and vector norms are defined in the following by a
angles. The joint torques € R™ are determined by the linearscaling with the joint stiffness matrix.
relationshipr = K(60—gq), in which K € R"*" is a diagonal ~ Remark 1: The design of the gravity compensation in Sec-
matrix containing the individual joint stiffness valués; as tion V-B does not involve the complete dynamics of the
diagonal elements, i.eK = diag(K;). The diagonal matrix manipulator, but refers rather to the static case. Theeefor
B € R™" consists of the rotor inertia®;. Furthermore, in this case the stiffness matrix is the appropriate choie f
M(q) € R™*"™ is the (link side) inertia matrix an@(q,q)g defining a metric rather than the inertia matrix.
represents the centrifugal and Coriolis-terms of the motet  Let R € R"*" be the square root of the joint stiffness matrix
vector of gravity torqueg(q) € R” is given by the differential K, i.e. K = R R. Then a vector nornf| - || : R® — Rt
of a potential functionV,(q), i.e. g(q) = (8V,(q)/dq)". for a vectorv € R" can be defined via the Euclidean vector
The motor torques,, € R™ are considered as the controhorm|| - ||2 as
inputs. Finally, the external torques which act on the raet . 1/2
summarized in the vectar,,; € R". vl = [|Rv|la = (v' Kwv)
At this point also two well known properties of the robo
model shall be mentioned which will be utilized in th

IIl. THE EFFECTS OFTORQUE FEEDBACK ON THE
FLEXIBLE JOINT MODEL

he matrix R, respectivelyk, is used herein as a normaliza-
. . Sion of the chosen physical units. Corresponding to thigorec

following sections: - . _._norm the matrix norm| - ||x : R"*" — R* for a matrix

F?rc_)p(.arty 1: The inertia matrix is symmetric and POSIVE 4 Rrxn s defined in the following via the spectral ndtm
definite: | - |li2- In this section we are interested in the Hessian of the
gravity potential. Consequently, it is reasonable to adersihe
quadratic formv” Av for a matrix A. For the vector norm
Property 2: The matrix M (q) — 2C(q, ¢) fulfills the con- || - ||x as defined above the following inequality holds

M(q) =M(q)" >0 VgecR".

dition:
oo v Av| < [[R"TAR™||ia ] [% -
4T (M(q) —2C(q,q))g =0 Vq,q€R"™. o _
¢ (M(g) (a.4))q 4 This motivates the choice
As already described intuitively in the last section, thpazent lAllx == [[RTTAR™ ||

motor inertia can be reduced frofg to By by feeding back N .
. B . . for the definition of the matrix nornfi - || k.
the jointtorquer = K (6—q). This is realized by the feedback Remark 2:Notice that the terz~ " AR~ corresponds to

law the coordinate transformation of a covariant tendoof rank
Twm = BB;'u+(I-BB,")T, (3) two whenR is the Jacobian of the coordinate transformation.
eA linear transformation (i.e. a mixed tensor), instead, ldou
be transformed aRAR .
Applied to the joint stiffness matri¥ this norm clearly gives
M(q)g+C(q,9)g+9g(q) = K(O—-q)+Tet, (4) || K|k =1.Based on this definition of the matrix norm, one
B0+K@O—-q) = u. (5) further assumption on the gravity potential is formulatesitn

] . ] . _This assumption will be useful for the design of the gravity

These gqluatlons qf motion will be the basis for the .des'_%mpensation.
of two joint level impedance control laws. The design in
Section V treats the gravity compensation and the stiffnessin this case the gravity potential can be written as the sutrigiinometric
implementation separately, and is a consequent realizatio terﬁ";S of thi joint ;‘”9'63; o | h — B instead

P : : : or a robot with rotational joints only one = R" instead.
the des_lgn idea descnb.ed n Seqtlon II. But before_hand’esom@inceK is a diagonal matrix, the matriR is given by R = diag(v/K;).
properties of the gravity potential are exposed in the nextrhe spectral norm is the matrix norm induced by the Euclideertor
section. norm, and thus in our case corresponds to the largest eigenva

wherewu serves as a new control input. The resulting syst
dynamics are given by
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Assumption 1:The HessiarH (q) := 82%;2@ of the gravity A. Implementation of the Compliance Behavior

potentialV,(q) satisfies the condition According to the design philosophy outlined in Section IlI

o o the control inputu;,,, is simply chosen as a joint space PD-
Y = vf}égp 1H (@)l < Kl =1 © controller for the motor angles

Notice that this assumption is not restrictive at all. Ititaily .

speaking it states nothing else than the fact that the ma- Uimp = —K (0 — 04) — D0, 9)

nipulator should be designed properly, in the sense that Q§fiere the controller gain matrif . and the virtual equilib-

JomF _stlffn_ess is sufficiently high s_uch that, for a flx_ed ot ium position on the motor sid@, are given by

position, it can prevent the manipulator from falling down

under the load of its own weight. K. = (K,)-K Y™, (10)

It should qlso t?e.ment.ioned .that the quantity is_dimen- 0, = q,+K 'g(q,) . (11)

sionless, since it is defined via the notm ||x. Notice also

that the existence of this bounrd, < 1 implies the following Equation (10) makes allowance for the fact that the corroll

property for the gravity potential which will be useful ingth gain matrix K. acts in series interconnection with the joint

stability analysis in Section V-E. spring K (see Fig. 2). The particular form ok, in (10)

Property 3: Let o, (as defined in (6)) be an upper boundnsures that in the gravity-free steady stdé,q,) the
for the Hessian of the gravity potenti&,(q) with respect to demanded stiffness relation... = Ko(q, — q,) is satisfied

the K -norm. Then the inequality exactly.
For the analysis in Section V-D it is required that not only
Vy(qy) — Vg(az) + 9(q))" (go — q1)| < K, but also the controller gain matrik .. is positive definite.

Therefore, the following assumption is made which implies
that the controller can implement no joint level stiffneager
than K.

Assumption 2:The desired stiffness matriky is assumed
to be symmetric and positive definite, and satisfies the eondi
tion (K,;' — K1) >0.
V. SEPARATE DESIGN OFCOMPLIANCE AND GRAVITY So far, the controller (3), (9) leads to the following clodedp

COMPENSATION equations

In this section a joint level impedance controller for the .. N .
model (4)-(5) is proposed. Let the desired impedance at the M(q.),q + C(.q’ @4 +9(q) =T+ Teu (12)
(constant) virtual equilibrium poinig, be specified by a By +Dob + K(0 —0a) + 7 =uy . (13)
symmetric and positive definite joint stiffness mat#%,, and
a pOSitive definite jOint damplng matripg. Therefore, the B. Gra\/ity Compensation
target dynamics of the impedance controller can be writeen a
a mass-spring-damper system of the form

1
5“9”‘12 - ‘I1||%(

holds for allq,, g, € QPF.
A proof of this statement can be found in [22].

In [10] it has been shown that for a motor position based
PD-controller a feedforward term of the gravity torques in
M(q)iq + (C(q,q) + Do)+ Ko(q— qg) = Teat . (7) the desired steady statg; can be used in order to achieve
asymptotic stability. This indeed leads for a position colter
in which the link side inertia of the robot is the same as in (lyisually to good performance because the deviations from the
Consequently, also the corresponding centrifugal andalieri desired position can be kept small. For an impedance con-
terms are present in the target dynamics. troller, however, this is not the case. Here a pure feedfaiwa
Remark 3:Note that the flexible joint robot model is aaction for the gravity compensation does not give satisfgct
4n-dimensional underactuated system in which every ja@int iesults because large deviations from the virtual equilibr
represented by four state variabl@,éi,q,-,q'i),i = l...n. position may occur in the case of a small desired stiffil€gs
Therefore, the desired target dynamics (7) of order 2n cahe problem of constructing an online gravity compensation
never be achieved exactly by any controller. term for a flexible joint robot based solely on the motor
Our design approach for approximating this impedance relgesition was first treated in [17]. The solution in [17], haeg
tion follows the ideas described in Section Il. The innerploostill leads to lower bounds oK g, limiting the generality of the
torque feedback reduces the effect of the motor inertia en ttmpedance controller. In contrast to this the solution nésd
closed-loop dynamics as described in Section Ill. In additi herein does not require such additional constraints [23]].[
we must eliminate the effects of gravity and implement thie the following a compensation for the static effects of
compliance according to the desired stiffness and dampithg gravity termg(q) is constructed. This compensation is
matricesKy and Dy. solely based on the motor position and can compensate for
The input variableu is thus split up into one term,,,,,,, which  the link side gravity torques in guasi-stationaryfashion.
actually implements the stiffness and damping, and anotieonsider first the sef := {(q,0) | K(6 — q) = g(q)} of
termu,, which acts as a gravity compensation stationary points (fofr.,; = 0) for which the torque due to
the joint elasticity counterbalances the link side gratatyue.
U = Wimp + Ug - 8 The goal of the gravity compensation is how to construct
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a compensation terng(@) such that inQ the equilibrium While in general the inverse functidng‘l(e) cannot be com-

condition puted directly in practice, it is thus possible to approxina
B it with arbitrary accuracy by iteration. From a practicaimgo
9(6)=g(a) V(g,0) € (14) " of view one or two iteration steps lead to quite satisfactory

holds. This means that the gravity compensation term codf§sults in this approximation. Notice also that by a firsteord

terbalances the link side gravity torque in all stationasings. @pPproximation withq, = g, one obtains the online gravity
The equation compensation term of [17].

In the following analysis it is therefore assumed that the
K(6—-q)=g(q) , (15) inverse functiorh, ' (6) is known exactly, although it can only

which describes the sé€1, motivates the definition of a func- be atﬁprOX|mat(|2d Ln p{?ﬁt'ce' i which P ition 1 hold
tion g(@) which can be understood as a quasi-static estimatefaéqo er remark about the range in which Froposition 1 holds

the link side position. Notice, therefore, that (15) caniobsly IS Important. The assumptio@? = R.n' Wh'c.h holds for
be solved uniquely for the motor positiéh Let us denote this instance when the robot has only rotational joints, was eded
solution by to ensure thafl’,(q) is a global contraction. If instea@? C

R™, then one must additionally ensure that the pod)tsf the
hy(q):=q+ K 'g(q) . (16) iteration (19) stay in an area in whi¢tH (q)||x < || K||x =

) _ 1 holds. While this is not a critical issue from a practicalrgoi
Furthermore, by the use of the contraction mapping theoreyp, o\ it is difficult to be proven in general

(see Proposition 1 below for more details on this) it can B§nce5(g) is the motor torque needed (statically) to prevent
shown that the inverse function fe,(g) exists. Then the robot from falling down under the action of its own weight
q(0) = h;l(g) 7 (17) oOne can see thag(@i) must be connected_ with a potenti.al
functionV;(6) which is related to the potential energy (gravity
which is the solution of (15) forg, can be used for the plus joint stiffness) of the robot. This potential functiwuil
construction of a gravity compensation term of the form  pe of interest for the passivity and stability analysis ie th
next section. A detailed derivation df;(@) is given in the

ug = 9(0) = 9(a(6)) . (18) appendix. Therein it is shown th&f (@) can be written as
It is important to notice that, while (14) clearly holds only 1
in Q, the functiong(#) by construction fulfills the equation ~ V5(8) = V,(q(0)) + 59(1‘1(0))TK‘1g(q(0))
K(0 —q(0)) =g(q(0)) for any 8 and independently of. 1
Finally, the question about the existence of the functjo) = Vy(a(8)) + 5(a(0) - 6)"K(a(6) - 0).

is answered by the following proposition.

Proposition 1:1f (6) from Assumption 1 holds globally ~ cqntroller Formulation
(i.e. for Q7 = R™), the inverse functiorh, ' () = g(6) of
h,(q) = ¢+ K 'g(q) : R® — R" exists globally. Moreover,
the iteration

The complete control law with gravity compensation is
summarized as, cf. (3),(8),(9),(18)

_ -1 B -1
Qs = Tyld,) (19) Tm = BBy ut(I=-BBy )T, (20)
. . _ u = —K.0-04)—Dyb+g(0) . (21)
with T';(q) := 6 — K~ "g(q) converges for every fixed and .
for every starting poing, to g(6). This leads to the closed-loop system
Proof: The proposition can be proven by showing first .. N
prop g Y J M(q)i +C(g,0)q +9(a) =T+ Tear . (22)

that the mappindl’,(q) : R™ — R™ is a globalcontraction . . -
(see [25]) for the vector norrj - ||x. Since the vector space By0 + Dgb + K.(60 —04) +7=g(0) . (23)
R™ together with the nornf| - || x is a Banach space one must

only show that there exists @< 1, such thatl',(q) satisfies D. Passivity

the condition For the passivity analysis it is assumed that there exists a

1T4(q2) = To(q)llx < pllgs — qillx  Yq1,92 €R™ . real § > 0, such that

As shown in [22] this is ensured by (6) from Assumption 1. Vo(g@) < B VYgeR" (24)
By the contraction mapping theorefalso calledBanach fixed 4o s is for instance satisfied for all robots with tiataal

point theorer one can theref(_)re* conclude* that the mapplr]gims only (i.e. without prismatic joints). Then also theagity

.Tg(q.) has a unigue fixed po'”’!' — Tg(q. ).and that the torque vectog(q) is globally bounded. Furthermore, (24) also

iteration of (19) converges to this fixed point: implies the boundedness &}(0) and g(0). Notice that the
lim g, =q" . requirement of a bounded gravity potential is only needed
nee for the passivity analysis, while the proof of the asymgtoti

By comparingT’y(q) with hy(g) one can easily see that (forstability in Section V-E will also be valid for a general

each particular value d) this fixed pointg* corresponds to potential.

q(0). B According to [26], [27], a sufficient condition for a system
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(with input w and outputy) to be passive is given by theE. Stability Analysis
existence of a continuous storage functmhich is bounded
from below and for which the derivative with respect tcgo
time along the solutions of the system satisfies the inetyuall
S < ylu.

In the following it will be shown that the system (22)-(23)
as outlined in Figure 3, consists of two passive subsystems _
in feedback interconnection. Notice that in connectionhwit K (60— a0) = 9(a0) , (28)
impedance control it is often assumed that also the environ- K (60 — q¢) + Kc(60 — 04) = g(60) - (29)
ment of the robot can be described by a passive mapjginrg (
—Tezt). The passivity of (22), as a mappitt@ + 7c.t) — 4,

Next it will be shown that the closed-loop system is asymp-
tically stable for the case of free motion (i#&.,; = 0).

1) Determination of the steady stat€&or 7., = 0, the
steady state conditions of the system (22)-(23) are given by

From (14) it follows that

K. (6,05 = 0 (30)
q e ,
QO (22) must be satisfied in the steady state. Due to Assumption 2 the
matrix K. is positive definite and hence the steady state is
given by:
SN —T
f 0 ®) —_ 6y = 04,
[ u q, = h;I(Oo) =44,
(21) @ = 60=0.
(23)
2) Lyapunov-Function:Consider the sum of the storage
“Text Environment functions of the subsystems as a Lyapunov function canglidat

Fig. 3. System representation as an interconnection ofvygasabsystems. First, it is shown that this function is positive definite. tite

_ ) that, due to (63) from the Appendi¥/(q,,0,6,0) = 0
is well known due to physical reasons and can be shown withds.

the storage function By extracting the kinetic part of (q, ¢, 0, 6)

) 1.7 . ) 1 1. .
Sa(a:d) = 54" M(@)q + Vy(q) (25) Viin(4,4,8) = 54" M(a)q + 5aTBetsv

for which (due to Property 2) the derivative along the soloi

of (22) is given by one can see that(q, g, 6, 0) is positive definite with respect

to g and @ because the inertia matrices are positive definite
Su(@, @) = 47 (T + Teat) . (26) (Property 1). In order to show that(q, g, 8, 8) is positive
definite with respect to the complete state, it is then seffici
In a similar way the passivity of (23), as a mappipg- —, t0 show that the potential part

can be shown with the storage function , .
1 1 ‘/Znot(qve) = V(qvqaeae) - szn(q;q70> (32)
. .T . T
56(9,0,0) = 56 Byb+5(0—q) K(0-q) is positive definite with respect tg and 6.
Consider first only the part of the potential energy dudso
In order to simplify the notation, in the remaining part oisth
section the functiorg(8) is written asg.

26— 0,)TK.(6—6,) - y(6)

The derivative ofSe(q,G,é) along the solutions of (23) is

then given b 1
Jven By Vi(g.0) = 5(6-q)"K(@-q) (33)
. . .T .
So(q,0,0) = -0 Dgb —q" T . 27 1 L L
(.6.9) BT @7) = S(0-a+a-a"KO-a+3-q)
The passivity of the closed-loop system follows directlynfr D PN _ T yr/
(26) and (27) and the fact that the feedback interconnection = 39@) K g@+5@-q9 K@-q
passive systems is again passive. It should also be medtione +(@—q)"g(q)

that these passivity properties are still valid if the PDvoller

in (21) is replaced by any other passive (with resped to  Herein the relationshigK (6 — q) = g(q) was used which
—u) controller. This structure of a feedback interconnectidiollows directly from the definition ofz(8) in (17). In order
of passive subsystems, as depicted in Fig. 3, brings aloryg veo simplify the notation, the deviation of the motor anglenfr

advantageous robustness properties for the closed-l@bpay its steady state value will be denoted 8y= (6 — 8,) in the
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following. The potential energy can then be written (witl3)Y6 the controller approximates the desired impedance behavio
from the Appendix) as follows from (7). Therefore, a small simulation of the seven-degtee

1T - of-freedom DLR-Lightweight-Robot-11 ([19], see also Fgjin
Voor(4,0) = Vi(q,0) + 56" K0+ Vy(q) —V5(0) Section VIII) will be shown. In this simulation the closedep
1.7 response for a step-wise excitation using an external &ofu
= Vi(q,0) + 50 K.0+V(q) — V() 10 Nm at joint 2 is evaluated. The simulation was performed
1, r with different values forBy in order to demonstrate the role
_59(‘1) K~ g(a) of the torque feedback in the controller. The desired st#fn

and damping matrices are set to diagonal matrices with an

Due to Property 3 the following inequality hold
) pery wing inequaity S overall stiffness ofl000 Nm/rad and the desired damping is

1 l.7 - g .
Voor(2.0) > ~(@- @) K(@-q)+-0 K.0 set to_Dg = dlag{lQO, 1_00, 1_00, 100,1,1,1} correspondmgp
2 2 . the different effective inertia for the lower and upper jsin
—Vy(a) = Vy(@) + (@ — a)" g(q)] In the following only the motion of joint 2, onto which the
1 _ L1, - external force is exerted, will be analyzed in detail. Inufig
> —(1- —q||%+-6 K0 . S P o .
- 2( )lla = allk + 2 4 the link side joint angle of this axis is shown. First, thelta

The right hand side of the last inequality is nonnegative felotted line shows the step response of the desired impedance

all (¢,0) € Qr, since by Assumption 1 the boung satisfies (7). Secondly, the dotted line shows the control action lier t

the inequality conditiony, < 1. Therefore, one can concludecontroller without any torque feedback, i.e. wifBy set to

that the considered candidate Lyapunov function is pasitivB. One can see some higher frequency oscillations and also a

definite in QP. rather huge overshoot. Next, the same step response is shown
3) Derivative of the Lyapunov-FunctioriThe change of with B, = B/3 (solid line) and withB, = B/10 (dashed

V(q, q,8,0) along the solutions of the system (22)-(23) (foline). The former corresponds to a moderate torque feedback

Tzt = 0) is given by while the latter is in the range of the highest gains which

could be implemented for this robot in practice considering

the noise of the torque sensor. One can see that for higher

Due to the fact that the matri®, is positive definite, it can torque feedback gains the desired dynamics is approximated

be concluded that the equilibrium point is stable. Furthamam better. In order t_o have a closer IOOk. at the ospil_lation dagp
asymptotic stability can be shown by the use of the invaéangerformance, Figure 5 ShOW.S the simulated joint torque. One
principle of LaSalle [25]. According to this theorem the teys can see that the_ torque oscillations, observed fpr the cﬁ_ase 0
state will converge to the largest positively invariant &at By = B (dotted line), are already damped out quite effectively

which @ = 0 holds. From the system equations it follows tha@t’) the Igwer gainB? :hBr/]?’ r(]solid Iinez a}\;d cagnort] t:je
there does not exist any trajectory for whi@h= 0 holds for observed any more or the higher galy = B/10 (dashe

all times¢ > 0 except for the restriction to the equilibrium“ne)'
point. Therefore, the following proposition can be coneldd

V(qaq7070) = St](q7q) + SQ(qaeae) =—-0 D90 .

Proposition 2: Under the Assumptions 1 and 2 the system 0.012
(22)-(23) is asymptotically stable for the case of free moti S _";“
(i.e. for 7., = 0). Moreover, if Assumption 1 holds globally 0.01 [T 7
(|.g. for 9P = R™), then the system is even globally asymp- —0.008 ; (TR S
totically stable. 3 7

0. Q06

F. Controller Discussion o ooak f

The passivity analysis in Section V-D shows that the closed- 0. 00ab £
loop system can be seen as a feedback interconnection of )

passive subsystems. In many applications the environment
can also be treated as a passive system with respect to the
input ¢ and the output-r.,;. Therefore, one can conclude

0.4
time [s]

very _a,ldvantag,eous robustness properties O_f the WhOIGnS_,’yStEig. 4. Simulated joint angle for a step wise excitation o (dash-dotted
Stability is for instance also guaranteed &sbitrary errors in jine: desired impedance, dotted linBy = B, solid line: By = B/3, dashed
the dynamical parameters of the inertia matriddSq) and line: By = B/10).

B as long as these matrices remain positive definite Bnd

remains a diagonal matrix. The solution presented so far, however, has one disadwantag
Concerning the formulation of the gravity compensatiomterThe stiffness and damping term;,,,, and the gravity com-

it should be mentioned that, in contrast to any related pres/i pensation termu, were designed separately. While the term
works, no lower bounds are imposed on the positive definitg,,,, guarantees the correct stiffness relation (statically) fo
matrix K, for stability reasons, meaning that the desirethe gravity-free case, the term, was designed for the case
stiffness Ky can be chosen arbitrarily close to zero. of free motion, i.e. forr.,; = 0. In the above analysis is was
At this point it is illustrative to evaluate up to which extenshown that these two terms can indeed be combined without
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functionl(q) plays now the same role as the gravity function
“““ g(q) previously. Notice that the equation (37) can also be
written asK (6y — q,) = l(g,) and by defining the function

- ‘ hi(q) =q+ K 'l(q), (39)

the static motor side positio, can be expressed & =
h;(q,). At this point it is assumed that the inverse function
of h;(q) exists and it will be denoted by

q,(0) :==h;'(6) . (40)

0 0.2 0.4 0.6 0.8
time [s] A sufficient condition for the existence of this inverse ftion

as well as an iterative computation procedure will be given
Fig. 5. Simulated joint torque for a step wise excitation ONin (dotted |ater in Proposition 3. By means le(g) a control law
line: By = B, solid line: By = B/3, dashed lneB, = B/10). combining the gravity compensation with a statically exact
stiffness design can be designed in the form

jeopardizing the passivity and stability of the system. But_ u = Ug(0)) - D0 (41)
is not guaranteed any more that the desired static relation B B .
Teat = Ko(q, — q,) holds exactly for allr.,; # 0. In fact, a = 9(0(9)) — Ko(q,(0) — q4) — Dob .

small steady state error can also be observed for the siomlaty, o nctioni(g), as defined in (38), is the differential of the
shown in Flgu_re 4 . . potential function
Therefore, a different impedance controller will be forated
in the next section which removes this drawback. Vilg) = V,(q) - %(q —a)"Kola—a,) (42)
i.e. 1(q) = (0Vi(q)/0q)T. Instead of the Assumptions 1, 2
the following assumption is heeded now.

In this section, the design idea for the gravity compensatio Assumption 3:The HessianH,(q) = 82(;/qu) of the poten-
from Section V-B is generalized by simultaneously taking function Vi(g) satisfies the condition 1
account of the desired stiffness. This will result in an ioyad
impedance control law which implements the desired static = sup ||[Hi(q)|lx <||K||lx =1. (43)
stiffness relation exactly. VqeQr

VI. COMBINED DESIGN OFCOMPLIANCE AND GRAVITY
COMPENSATION

Notice that this assumption implicitly contains an uppeuno
] on the desired stiffnesKy, similar to Assumption 2 for the
A. Controller Design previous controller. This is not surprising since, agahg t
Consider the case that a constant torgque; acts on the controller basically implements a stiffness which is inieser
robot (4)-(5). The equilibrium conditions for this case are interconnection to the joint stiffnes&’. The stiffnessKy
therefore must bemaller than K. Assumption 3, however,
K(0—aq0) = 9(q) ~ Tear , (34)  ensures the existence of the inverse functiop'(6) as
K(6o—qy) = wuo, (35) formulated in the following proposition which is analogous
to Proposition 1.

Proposition 3: If Assumption 3 holds globally (i.e. for
QP = R") then the inverse functiok; ' (8) := q,(8) of
Ko(qy — q4) = Teat (36) hi(q) = q+ K 'l(q) : R" — R" exists globally. Moreover,

the iteration

whereuy is the static value of:. In the following the desired
stiffness relation

shall be achieved statically. By combining (36) with (340go0
gets the condition Qpir = Ti(@n) (44)

K (00— a0) = 9(20) = Ko(ao — 94) - B7 " with T;(q) := 6 — K 'I(q) converges for every fixed and
This condition can be seen as a relationship between thie stéer every starting poing, , to q,(6).
motor side positiorf, and the static link side positiog,. In  Furthermore, by following the same derivation as in the
order to stress the similarity of the following derivatianthe Appendix (withl(q) instead ofg(q)), one can show that the
derivation of the gravity compensation term in Section V-Bontroller terml(g,(6)) can be written as the differential of
the functionl(q) is defined as the potential function

lig) := — Ky(qg — . 38 _ 1 g,

(@)= gla) = Kola = a) GO vie) = Vi@, 0) + JH@ @) K 1@ ®) . @)
The following procedure is then completely analogous to the
design of the gravity compensation term in Section V-B. Thee. I(g,(0)) = (0V;(0)/00)T.
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B. Stability Analysis A. Visco-Elastic Joints
(3) is given by interpretation of the torque feedback it is also possible to

include joint damping, i.e. gear damping, very easily. The
M(Q)g+C(q.q)q+9g(q) =K(O —q) +Texr ,  (46) considered model with joint damping is given by

Byf+ K(0-q) =1(a(0) -Deb. (47)  M(q)i+Clg.a)a+g(a) = KO-q)+

Following the same line of argumentation as in the previous DO - @)+ Tea ,
section, one can prove the asymptotic stability also fos thi B0+ K6 —q)+D(@0-q) = 7,

system by using the Lyapunov function where the matrixXD € R™*" is a diagonal and positive definite

damping matrix. For this model the same type of controller

. . 1. . 1.7 .
Ve(a:4,6,0) = §qTM(q)q T 50 By6 + as in the last section can be used, when the control law (3) is
Vo(q) + Vi(q,0) — Vi(9) , replaced by

_ —1 B —1 —1.
With Vi(q.6) and Vi(8) given in (33) and (45). This is " — BBs ut (I =BB,) (r+DK"'7) . (48)

summarized in the following proposition. with 7 = K (6 — q). This leads to the closed-loop system
Proposition 4: Under the Assumption 3 the system (46)- . N

(47) is asymptotically stable for the case of free motioa. (i. M(q)q+C(q,9)q +9(q) =

for T..: = 0). Moreover, if Assumption 3 holds globally (i.e. Text + K(0 —q)+ D(0 —q)

for QP = R™), then the system is even globally asymptotically B0+ K@O-q)+DO—-q) =u

stable. Considering interaction with the environment, ficg

Tezt # 0, the closed-loop system represents a passive mappifiywhich the intermediate control input can be chosen in
Test — q. the same way as in the previous sections. All the passivily an

stability statements given in this work also hold for a model
with visco-elastic joints.

C. Controller Discussion

Notice that also the control law presented in this sectidh Cartesian Impedance Control

does not exactly implement the desired impedance (7), cf.ln many applications the desired impedance behavior is
Remark 3. However, this yields a good approximation whiatkefined with respect to the end-effector motion rather than
is the better the higher the inner loop torque feedback is. joint coordinates. In this section it is shown that the
In the experimental part in Section VIII some comparisonsontroller from Section VI can easily be generalized to the
with a simulation of the desired impedance are presentégplementation of a desired Cartesian impedance contraile
which give an impression how well the desired impedantke Cartesian case, however, the singularities of the Jatob
is approximated. But in contrast to the previous soluti@mir matrix clearly pose a limitation on the achievable region
Section V this controller fulfills now the required steadgtst of attraction. Also, for a Cartesian controller applied to a
condition exactly. This can be seen by computing the steadydundant robot, stability can only be achieved if the dekir

state for a constant external torque,:, which leads to Cartesian behavior is augmented by some nullspace behavior
Despite these general differences between joint levelrobnt

K(6o—a,) = 9g(ag) — Teat and Cartesian control, the generalization of the impedance

K(0)—q,) = g(q,00)— Ko(q,(00) —qy) - controller to the Cartesian case can follow the same line of

argumentation as in Section VI.
Since q,(8) (by construction) satisfies (37), it follows thatin the following it is assumed that the forward kinematics
q,(80) = q, must hold. This implies, as desired&y(q, — Mapping from the joint space coordinaiggo the Cartesian
q,) = Text- coordinatest = f(q) € RS as well as the Jacobian matrix
At first glance it might be somehow surprising that thd(g) = %ff) € R*™ are known. The desired impedance
controller is formulated in the coordinatgg(6) but does not behavior is specified in terms of a Cartesian virtual equitlitn
require the Jacobian matridg,(0)/90 explicitly. Notice that positionz;, a symmetric and positive definite stiffness matrix
the reason for this is that the functid(y,()) is already the K, € R%*® and a positive definite damping matri?, <
differential of the potential functioi;(). R%*¢, Based on this one can formulate a desired Cartesian

stiffness potential in the form

1
VIlI. GENERALIZATIONS Ve = §(az — a:d)TKx(a: —x4) . (49)

In the previous sections two joint level impedance corGonsider the case that a constant generalized externa forc
trollers were presented. Several extensions of theseallemyr F'.,; acts on the robot. In steady state at a positgn
are possible. Some of them are discussed in the following.the generalized external fordg.,; is related to the external
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torques Ty Via Text = J(qO)TFm. The desired static singularities of the Jacobian nor the redundant case ate pro

equilibrium condition for this case is lematic since no inversion of the Jacobian is needed for
oV, T the controller computation. The potential function for the
Fopp = K (xg—x4) = ( 5(33)) , (50) controller is given by
xr
T=xTq B 1 B T 1 B
which can be equivalently expressed in joint coordinates as  V¢(0) = Ve(@c(0)) + 5¢(a.(8))" K™c(q.(9)) ,  (58)
avi (@) \* for which ¢(g.(0)) = (0Vz(8)/90)" holds. The control law
et = (T) ; (51)  again ensures passivity of the closed-loop system. Thibean

a=q, seen by using the positive semi-defiflifanction
as long as the Jacobian matrix remains non-singular. By _ 1 1.7 .
combining this desired steady state condition with (34) one  V(q,q,0,0) = EqTM(q)z'IJr 50 By +

gets (instead of (37)) now the equation

Vo(a) + Vi(q,0) — Ve(0) , (59)
T
K(0,—q,) = glg,)— (M) . (52) @as a storage function.
dq a=q, For proving stability, however, one must distinguish betwe
The terms on the right hand side of this equation motivate tH%e _r(_edunde_m_t and the non-redundant case. While (59) become
definition of the function positive definite for a non-redundant robot and can be used fo
. proving (local®) asymptotic stability, an additional nullspace
clg) = glg) - <de(f(Q))> (53) control is needed in the redundant case.
' dq ' Regarding singularities of the orientation represeniaitiothe

which replacesi(q) from Section VI. For completing the Cartesjan coo_rdinateﬁ(q) it should be mentioned tha.t the
controller design one can then repeat the procedure fratptential function (49) could also be replaced by the paaént
the joint level case using(q) instead ofl(q) as well as of one of the singularity-free spatial springs proposedeyy,,
Ve(q) = Vy(q) — Vz(q) instead ofV;(q). Consequently, the Fasse or Natale (see e.g. [28], [29]).
controller can be formulated as
) VIII. EXPERIMENTS
u = ¢c(q.(0)+D:(6)0, (34) " In this section some experiments are reported for evalgatin
_ ave(f(@)\" - the proposed controllers. The first two experiments were con
= 9(q.(0)) - <T> a®) +D.(0)0, ducted with the seven-degrees-of-freedom DLR-Lightweigh
q_q"_ _ Robot-11, while the second two were performed with the newer
where g.(6) corresponds to the solution of the equatiop| R-Lightweight-Robot-lll. These robots are equippedtwit
K(6 — q) = c(q) for g and D.(0) is a joint level damping joint torque sensors additionally to the motor positionsses
matrix chosen as and thus are ideally suited for the implementation of the
D.(6) = J(3.(0)"D,J(q,(0)) (55) proposed controllers. For the experiments the Cgrt_esiatmjo
law from Section VII-B was chosen because it is the most
which is positive definite as long as the Jacobian matrix émplex controller from the paper and the interaction with
non-singular. For ensuring the existence and uniquenessttfd human user is then more intuitive. For the evaluation
q.(6) the following assumption is needed representing afditionally a force-torque sensor was mounted on the tip of

upper bound of the achievable Cartesiar; stiffness. the robots.
Assumption 4:The HessianH .(q) = %&iﬂq) of the po- Figure 6 shows the initial configuration of the robots for the
tential functionV.(q) satisfies the condition experiments. In the first experiment the achieved compdiasic

evaluated. The Cartesian impedance from Section VII-B was
de T et 1Hc(g)llx <[|Kllx =1. (56) " implemented with diagonal stiffness and damping matrices
This assumption implicitly represents an upper bound fer tiwith the values given in Table I. The three translational
Cartesian stiffnes& , with respect to the joint stiffnes” and coordinates are denoted by, ¢,, ande.. For the orientation
is analogous to Assumption 3 from the joint level controllerepresentation RPY Euler angles were used. The oriengdtion
It ensures the existence @f.(8) according to the following coordinates are denoted by, ¢,, and¢..
proposition. In the experiment a human user exerts (generalized) fontes o
Proposition 5: If Assumption 4 holds globally (i.e. for the robot end-effector by pulling and pushing, mainly in the
Qr = R") then the functiong.(@), i.e. the solution of horizontal - and y-coordinates) directions. The interaction
K (0—q) = c(q) for g, exists globally. Moreover, the iterationforces are measured by a six-degrees-of-freedom forcgreer
) R sensof! mounted on the end-effector. Notice that this sensor
Aenr1 = Tellen) (57) was not used in the implementation of the impedance con-

with T.(q) := 8 — K ~'¢(q) converges for every fixed and troller but is used only for evaluation purposes. The applie

for every starting PO'_“@C,O to qc(e)‘ . . Swhich is positive definite only in the non-redundant case
The above description presents the implementation of theorhe giobal case is obstructed by the singularities of theklan.

controller so far. Notice that for the implementation neith 1A JR3 sensor was used.
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Fig. 6. Initial configuration of the DLR lightweight robotd WR-II left,
LWR-III right) for the experiments.

Fig. 7. Applied forces inz-direction (solid line) andy-direction (dashed

Coord. ex ey ez Pz Py B line) in the first experiment.
Stiffness | 700 | 4000 | 4000 | 200 | 200 | 200
N N N Nm Nm Nm
_ m m m rad rad rad
Damping | 70 400 400
Ns Ns Ns Nms Nms Nms
m m m rad rad rad
TABLE |
STIFFNESS AND DAMPING VALUES FOR THE FIRST EXPERIMENT .
=
(]
2
o
forces inz- and y-direction over time are shown in Figure
7. In order to evaluate the resulting stiffness and damping,
the force and displacement in andy-direction are shown in b
Figure 8 and Figure 9, respectively. The correspondingcstat -50 0 50
characteristic line according to the relevant stiffnestuea X [mm]

from Table | is shown by the dashed line. Notice that the _ o .

hysteresidike deviation from the static value is caused b)?r?é géshézﬂlifg ;g;fgsvs' Snd'eﬁecmr deviation indirection (solid line).
ponds to the desired stiffness. Titeddne shows a

the Cartesian damping. The dotted line shows additionalimplified) simulation result.

the result of a simple simulation of the desired Cartesian

impedance. In this simulation the measured contact force is

used as an input and the Cartesian motion is the output. THI§ impact force. The measured static end-effector dewiati

simulation contains some further simplificatiéh<Notice that and contact force give a stiffness value~o8882 N/m which

the simulation shows only the desired compliance and na jo#Prresponds very well to the desired value1660 N/m. The

elasticity is included. One can see that the experimensalie Peak of the contact force results mainly from the velocity at

fit quite well the simulation of the desired compliance fowlo the impact. One can see that the closed-loop system keeps

(Figure 8) and high (Figure 9) Cartesian stiffness values. stable also in contact with this environment having quitéyh h

In a second experiment an impact with a wooden surface wifness and that also high impact velocities can be hahdle

performed using the controller from Section VII-B with the-p TWo additional experiments with the DLR-Lightweight-Rdbo

rameters from Table II. This experiment shows the robustndd were performed in order to analyze the step responseeof th

Of the Controner in contact W|th a passive environment_ Tr@artesian controller as well as the effects of uncertagntiehe

initial configuration is shown in Fig. 6. Figure 10 displayet €nd-effector load. The stiffness values for these experisne

desired and the measured end-effector motion in the verti¥¢ere chosen smaller than in the first two experiments and

z—direction during the impact. Additionally, Fig. 11 depictgire given in Tab. Ill. In this experiment a heavy load of about

Coord. e e e ) ) b=

Coord. exr ey e, bz by b2 - z Y Z L Y
: Stiffness | 2000 | 2000 | 2000 | 100 | 100 | 100
Stfiness | 4000 | 4000 (4000 | 200 |~ 200 | 200 N N N | xm | Nm | N
: m m m rad | rad | ‘rad Damping | 110 | 110 | 110 | 14 T T4
Damping | 400 | 400 | 400 | 5 5 5 e el B ol B I B B
Ns Ns Ns anls Lﬂzlis anlis m m m rad rad rad

m m me ra. ra ra
TABLE I TABLE Il

STIFENESS AND DAMPING VALUES FOR THE IMPACT EXPERIMENT STIFFNESS AND DAMPING VALUES FOR THE STEP RESPONSE EXPERIMEN

12The inertia matrix was considered constant and accordinglgentrifugal 4.5 kg was _attaChe_d. to th? end-effector. In this_evaluation Only
and Coriolis-terms were included. the Cartesian position will be analyzed. In Fig. 12 the step
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|
a
o

-100f

impact force[N]

-150F z o

. . . 200kl
-10 0 10 0 1 2 3
y [mm] time [s]

Fig. 9. Applied force vs. end-effector deviation gndirection (solid line). Fig. 11. Measured force in the impact experiment.
The dashed line corresponds to the desired stiffness. Tieddine shows a
(simplified) simulation result.

0.6 0.8

time [s] Fig. 12. Step response for the Cartesian impedance cantrdlhe dashed
line shows the commanded step. The step response with andutvibad are

Fig. 10. End-effector height in the impact experiment. Thstekd line shows shown by the dotted and solid line, respectively.

the end-effector height of the virtual equilibrium positiand the solid line
the measured end-effector position.

model error. This goes in accordance with the theoretically
proven (passivity-based) robustness properties.

response for a step & mm in verticalz-direction is shown
with and without the load attached. In both cases the exadt lo IX. SUMMARY

was known for the controller computation. Since the cof@rol , yig haper we propose two impedance controllers for flex-
does not shape the effective inertia but implements S88n€y, e joint robots. In both controllers an inner torque feadb

and damping, the step response changes accordingly. 56, 'is ysed in combination with an outer impedance control

remaining end-effector deviation is in the range of the know,, £ the torque feedback a physical interpretationvery
friction effects for this robot. Next, the effects of un@nties g, -, hat the complete controllers could be analyzed based o
in the load shall be analyzed. Notice that the controllersdo assivity theory.

only contain the gravity model, while it does not requirgpe first controller combines a motor position based gravity
the _co_mputatmn of _the inertia matrix or the centrifugal angompensation term with a stiffness and damping term. In the
Coriolis-terms. Again, the load of- 4.5 kg was attached o0y controller these parts instead are merged such that
to the end-effector. At the beginning of the experiment thg giea4y state the desired equilibrium condition could be
load is included in the computation of the controller. Then, qaisfieq ‘exactly. It is shown that both controllers can lgasi
_tlme stept = 0'2.6 S th_e load in the controller co_mputanonbe adapted to the case of visco-elastic joints. Furtherntioee

IS S?t to zero S|m_ulat|n_g a huge model uncertalnty for _ﬂ_beéneralization to Cartesian impedance control has been out
gravity compensation. Figure 13 shows the Cartesian POSitiinaq. Finally, the efficiency of the proposed control amo

deviations for the case of the known (time period A) angl s yerified in several experiments with the DLR lightweight
unknown (time period B) load. One can see that the deviati

in time period B corresponds very well to the commandegbms'

stiffness 0f2000 N/m with an external force resulting from

the unknown load. While uncertainties in the load thus tyear APPENDIX

affect the position accuracy according to the desiredn&td$ In this appendix the potential functidi; (@) for the grav-

behavior, the stability of the system is not affected by thige ity compensation terng(6) is derived such thag(0) =
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Notice also that for all stationary points the potential rgye
of the manipulatorV,..(q,0) = Vi(q,0) + V,(q), with
Vi(g,0) = (6 — q)T K (0 — q) as the potential of the joint
stiffness, is identical to the gravity compensation pagnite.

z-coordinate[mm]
N
o

B
15
—20
0 02 04 0.6 0.8
time [s] (1]

Fig. 13. Effect of uncertainties in the gravity model. In @rperiod A the 2]
load (~ 4.5 kg) of the end-effector is known and considered in the cdietro
while in time period B this information is not included.

(3]

(0V5(0)/00)T holds. Remember that for the construction of
g(0) = g(q(0)) in Section V-B the functiog(0) = h, " (6),

i.e. the inverse of the functioh,(q) = q + K 'g(q), was
used. Existence and uniquenesshf' (8) were established !
in Proposition 1 by the use of Assumption 1.

In the following the Jacobian matrixg(0) /06 will be needed.
Consider first the Jacobian matrix of the functibp(q)

(4

(6]

Ohg@) _ (., 1990 (60)  [7
dq 0q
Due toh,(g(@)) = 6 one has (8]
Ohy(a(0)) _ 9hy()9a(8) _,
00 oqg 00 ’ [0l
and therefore the Jacobian matﬁ%% is given by (10]
_ — —1
8‘2—? = (I +K18%—(q)) (61) [11]
4 /g=a(0)
The potential functioV;(0) clearly can be written in the form
[12]
V5(0) = V3(hy(q(9))) =: V5n(a(0)) - 13
For the differentialdV;(6)/00 one obtains
0Vy(0) _ (avgh<q>> 0(6) a
00 q a=ae) 00 5
_ 15
By substituting?2{?) — g(q) = g(g(0))" and 22} from
(61), one gets [16]
Van(@) \T < 189(«1))
o 9(q) 94 7
_ _ 7 -—199(q)
_ T T 199\94)
= 9(@) +g(@ K 9q
This differential can be integrated t&;,(q) = V,(q) + (18]
19(@)" K 'g(q) + ¢, with an arbitrary constant € R and
the gravity potential;(q) from Section IV. Settinge = 0  [19]
leads to the gravity compensation potential
[20]

V5(0) = Vin(a(8))

V,(a(6)) + 59(a(0))" K 'g(a(6)

Vior(4.6) = V5(8) ¥ (4,8) €. (62)

” | From this it follows thatV; (@) can also be written as

V5(8) = Vot (a(6), 0) = Vy(a(0)) + Vi.(a(6),6) .

(63)
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