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Ganesh G, Haruno M, Kawato M, Burdet E. Motor memory and
local minimization of error and effort, not global optimization, deter-
mine motor behavior. J Neurophysiol 104: 382–390, 2010. First
published May 19, 2010; doi:10.1152/jn.01058.2009. Many real life
tasks that require impedance control to minimize motion error are
characterized by multiple solutions where the task can be performed
either by co-contracting muscle groups, which requires a large effort,
or, conversely, by relaxing muscles. However, human motor optimi-
zation studies have focused on tasks that are always satisfied by
increasing impedance and that are characterized by a single error-
effort optimum. To investigate motor optimization in the presence of
multiple solutions and hence optima, we introduce a novel paradigm
that enables us to let subjects repetitively (but inconspicuously) use
different solutions and observe how exploration of multiple solutions
affect their motor behavior. The results show that the behavior is
largely influenced by motor memory with subjects tending to invol-
untarily repeat a recent suboptimal task-satisfying solution even after
sufficient experience of the optimal solution. This suggests that the
CNS does not optimize co-activation tasks globally but determines the
motor behavior in a tradeoff of motor memory, error, and effort
minimization.

I N T R O D U C T I O N

Motor planning and execution have been modeled as the
optimization of a cost function involving physiological and
task variables such as motion smoothness (Flash and Hogan
1985; Uno et al. 1989), task error (Burdet and Milner 1998;
Harris and Wolpert 1998), effort (Todorov and Jordan 2002),
or a combination of error and effort (Emken et al. 2007;
Franklin et al. 2008; Miyamoto et al. 2004; O’Sullivan et al.
2009). However, tasks used in motor control experiments such
as reaching movements (Morasso 1981; Osu et al. 2003; Uno
et al. 1989), force field learning (Burdet et al. 2001; Shadmehr
and Mussa-Ivaldi 1994), and movements through via-points
(Flash and Hogan 1985; Uno et al. 1989) are limited in their
ability to differentiate effort from error minimization (O’Sullivan
et al. 2009): Noise and thus error generally increase monoton-
ically with motor command (Jones et al. 2002; Osu et al. 2004),
such that error and effort are in one-to-one relationship. These
tasks thus feature a single optimum of error and effort in which
optimization has been computed using linear optimal control
(Todorov and Jordan 2002) or nonlinear optimization with
constraints (Biess et al. 2007) or by gradient descent (Franklin
et al. 2008). Suboptimality has been examined with respect to
incomplete convergence to the unique optimum (Izawa et al.
2008) but never in a paradigm with distinct multiple optima.

In contrast, many real life tasks requiring muscle co-activa-
tion control are characterized by multiple solutions and hence
distinct optima of error and effort. To prevent spilling water
from a glass due to a force disturbance, one can either stiffen
one’s arm to reduce the amplitude of its movement (i.e., a
strategy requiring large muscle activations and effort) or con-
versely relax the arm (requiring less effort), leading to a larger
movement but low hand acceleration. Considering a multi-joint
task involving both arms, the stability of a bicycle while riding
downhill on a bumpy road (detailed explanations and modeling
are provided as supplementary information1) can be main-
tained by keeping the handle bar stiffness either below or
above a certain range of values in which there is resonance and
the cycle becomes unstable. Note that in both these tasks an
increase of muscle co-activation can lead to increasing task
noise. Tasks with multiple muscular solutions can also lead to
drastic changes in movement kinematics (Todorov and Jordan
1998; Zhang and Rosenbaum 2008).

To systematically investigate how humans deal with such
co-activation tasks characterized by multiple muscular solu-
tions, while avoiding confounds connected with multi-joint
tasks (such as monitoring and control of multiple muscles and
designing of experiment with low inter subject variability), we
introduce a simple and well-controlled paradigm inspired by
the glass of water example. Traditionally, robotic interfaces
have been used in motor control experiments to provide force
fields for the subject to adapt force or mechanical impedance
(Burdet et al. 2001; Shadmehr and Mussa-Ivaldi 1994). While
these experiments investigated interaction as function of sub-
ject position, velocity, or force, our paradigm enables interac-
tion as a function of subject muscle activation (and hence joint
impedance). However, using force perturbations would require
complex subject specific fine tuning of the working environ-
ment. To avoid these complications, we utilize a strategy of
muscle activity [electromyography (EMG)] mediated position
perturbation that helps us provide a well controlled multisolu-
tion environment to observe subject behavior. While it is
generally assumed that stiffening the joints attenuates pertur-
bations, this paradigm enables us to study for the first time a
task that can be fulfilled by lowering of impedance to reduce
noise. The paradigm enabled us to let subjects repetitively (but
inconspicuously) take different solutions, requiring different
effort and observe how this affects their motor behavior.

While task error and effort costs have been the popular
variables used to model motor optimization, the results of our
study suggest that motor memory is an additional and major
determinant of motor behavior. Subjects were observed to
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involuntarily repeat recent task-satisfying muscle activations
with little regard to minimization of effort.

M E T H O D S

Subjects and task

Twenty naive healthy right-handed subjects (aged 22– 40 yr, 18
males) without known pathology performed three experiments in
two environments (Table 1). The experiments were conducted
according to the principles in the Declaration of Helsinki. The
experiments were approved by the ethics committee at Imperial
College, and the subjects gave informed consent prior to perform-
ing them.

The subjects stood in an upright posture and had their forearm fixed
to the wrist manipulandum (Fig. 1A). The manipulandum imposed
sinusoidal perturbations of varying frequencies between 4 and 6.5 Hz
in the flexion-extension direction, in steps of 0.25 Hz presented for 10
s each. The chosen frequencies prevented subjects from using recip-
rocal activation (unpublished information) of their muscles for posture
control. The subjects had to thus control the co-activation of their
muscles (and hence effort) to maintain wrist movement within a target
amplitude of �3° (Fig. 1B). EMG was recorded from the wrist
muscles throughout the experiment (Fig. 1C) and, unknown to the
subject, was used to control the manipulandum and apply a perturba-
tion on the wrist such that the subject had two distinct co-activation
levels to satisfy the task.

The co-contraction task with multiple solutions (environment 1) is
described in Fig. 1, A–D. The darker areas in Fig. 1, D and E, indicate
the regions where the task is satisfied, i.e., where the wrist angle
amplitude is within the target. At each frequency, the subjects could
co-activate strongly and be in the high region requiring large effort or
relax co-activation and use the low region requiring less effort (Fig.
1E). The subjects were expected to realize this by exploration during
the numerous trials. Each subject worked in either environment 1 or
environment 2.

Muscle co-activation

When a subject co-activates his wrist in a fixed posture muscle
activity (EMG) across flexors and extensors of the wrist co-vary,
and thus the subject co-activation can be reliably estimated from
the activation of a single pair of antagonist muscles. EMG signals
were thus recorded from two wrist muscles: flexi-carpi radialis
(FCR) and extensor-carpi radialis brevis (ECRB). After electrode
placement for each muscle was determined using functional move-

ments, the area was cleansed with alcohol and abrasive gel (Nu-
prep, DO Weaver). Electrode paste (Biotach, GE Marquette Med-
ical Systems) was applied onto the EMG electrodes (Delsys Bio-
tech), and the electrodes were fixed to the subject’s skin with tape.
A ground electrode was fixed to the ankle of the subject. The EMG
signals were amplified using a Delsys EMG amplifier (BAGNOLI
16), before being fed into the manipulandum computer through a
National Instruments data acquisition card (NI 6221). The col-
lected EMGs were rectified and smoothed with a moving average
of 500 ms. The smoothed EMG signals from the two muscles were
scaled to equate the amplified values and added to estimate the
subject co-activation. The maximum value of the co-activation a
subject could generate was termed as the maximum voluntary
co-activation (MVCA).

Environments and control

In the experiment, the manipulandum motor (and hence the subject
wrist) was controlled to follow reference sinusoidal trajectories of
different frequencies and amplitudes using a PID algorithm imple-
mented in the National Instruments LabVIEW Real Time 8.5.1
environment. The frequencies were varied between 6.5 and 4 Hz over
a period of 110 s (Fig. 1E), while the amplitude of the perturbation
was determined by a predefined multi-solution environment mapping
between frequency, current subject co-activation (in % MVCA) and
disturbance amplitude (Fig. 1D). High gains of the PID controller
ensured that the desired trajectory was tracked strictly without any
significant decrease of the movement amplitude due to mechanical
stiffening of the subject wrist. This allowed us to choose customized
environments to benefit the study; i.e., environments (like Fig. 1D)
with two distinct co-activation levels (solutions) that satisfy the task
goal.

This control strategy provided two benefits: 1) although the
system was position controlled and stable, the continuous change
of wrist amplitude with change of co-activation induced a behavior
similar to a system under force perturbations. This is important for
the study of impedance changes; 2) it enabled us to set up a custom
co-activation-amplitude relation (Fig. 1D) for the subject to ex-
plore. Setup of a similar environment with force perturbations
would prerequisite joint impedance measurements for every sub-
ject at different muscle activations, perturbation frequencies, and
amplitudes.

The sinusoidal movement amplitude A, which is a function of
coactivation in %MVCA (�) and disturbance frequency (�) in envi-
ronment 1 is shown in Fig. 1D, is defined by

TABLE 1. Summary of experiments

Experiment Description

Environment 1 (5 subjects, 4 males) - 1 training trial
- 1 set of 3 free trials
- 1 set of three forced trials
- 1 set of 3 free trials
- 1 set of three forced trials
- 1 set of 3 free trials

Environment 2 (tapering) (10 subjects, 9 males) - 1 training trial
- 1 set of 3 free trials
- 1 set of three forced trials
- 1 set of 3 free trials
- 1 set of three forced trials
- 1 set of 3 free trials

Subsidiary experiment (in Environment 2) (5 male subjects) - 3 free trials with increasing frequency
- 1 free trial with decreasing frequency, (3rd and 4th) trials with sudden

change in disturbance frequency.
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A(�, v) �
(21 � �)2

400
�

2(v � 4)

5
if |� � 5x| � p ⁄ 2

�
16z(� � x)4

p4 �
8z(� � x)2

p2 � z �
(20 � �)2

400

�
2(v � 4)

5
if |� � 5x| � p/2 (1)

where

z � 2.0(v � 4)2 ; p � 8 if v � 4

�0 ; p � 4 if v � 4

and

x � 1.6(v � 2.5) � 5.8

Further

A(�, v) � A(�, v) � 0.06(� � 8.5)

A(�, v) � 1.6 � 0.005(�14v � 8� � 13) if 7� � 16v � 12

For the second experiment, a tapering environment (like in Fig. 3) was
defined by

A(�, v) �
4.62(100 � �)2

20000
�

4.62(v � 4)

5
if 8|� � 5x| � 75z

�
5.97(� � 5x)4

10000z3 �
10.92(� � 5x)2

100z
� z �

4.62(100 � �)2

20000

�
4.62(v � 4)

5
if 8|� � 5�| � 75z (2)

where

z � 0.8(v � 4)

and

x � 2.8(v � 4) � 2.7

Further

A(�, v) � A(�, v) � 0.092(� � 7.5) if � � 7.5
A(�, v) � 3.23 � 0.25�3.23 � A(�, v)� if A(�, v) � 3.23 and

� � 14v � 43.5

The parameters of the environments were adjusted to achieve the
following salient features. 1) The environment is characterized by
clear and distinct minima while maintaining the width of the high and

FIG. 1. Experimental setup. The subject stood with the arm comfortably fixed to a wrist manipulandum (A), which imposed sinusoidal perturbations to the
wrist. The subject received visual feedback of the wrist amplitude in the form of a red bar (B) and had to maintain it within a target. The electromyographic (EMG)
signals from the flexi-carpi radialis (FCR) and extensor-carpi radialis brevis (ECRB) muscles (C) determined the subject co-activation and modified the red bar
width according to the function of D where the target width (3°) is represented by the violet plane such that any co-activation level below the violet plane would
satisfy the task. The 2 dimensional gray scale representation of D is plotted against time in E. The subject could co-activate to use either the low or high
(co-activation) region (darker regions in D and E) to satisfy the task and keep the red bar inside the yellow target (B). In forced trials, the subject got an additional
feedback of his co-activation (blue bar in B) for the 1st 5 s of the trial.

384 G. GANESH, M. HARUNO, M. KAWATO, AND E. BURDET

J Neurophysiol • VOL 104 • JULY 2010 • www.jn.org

 on S
eptem

ber 21, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


low regions approximately similar. This was important to ensure that
the subjects do not have a larger margin of safety in either region. 2)
The surface of the mapping from co-activation to perturbation ampli-
tude (i.e., Eq. 1 and 2) are smooth with nonzero slope, such that
co-activation change is always accompanied by a change in wrist
amplitude. 3) The minimum wrist amplitude (Fig. 4A) is similar in the
low and high regions and is equal in the parts that the subject
trajectories lie in (Fig. 4A). This ensures that the error cost is similar
for the subject in both regions. 4) The gradient sign is same in both the
low and high regions such that in both regions the movement ampli-
tude decreases as muscle co-activation increases. This makes inter-
pretation of subject behavior intuitive.

The only free parameter, the maximum wrist amplitude allowed in
the experiment, was adjusted so as to avoid discomfort at the highest
frequency. All the subjects could perform in the environment imme-
diately in the very first trial. The paradigm did not need learning. The
subjects were able to maintain the wrist amplitude inside the target
value during most of the duration (i.e., in 91 � 6.6%; mean � SD)
already in their very first trial.

Trial types

The subjects performed a series of trials in which they received
perturbation of frequencies decreasing in steps of 0.25 Hz from 6.5 Hz
down to 4 Hz (Fig. 1E). Each frequency lasted for 10 s. This gave rise
to a co-activation trajectory (green traces in Fig. 1E) in each trial that
we use to analyze the behavior of each subject.

The subjects performed two types of trials: free trials, performed
with the aid of visual feedback of the wrist movement amplitude, and
forced trials in which additional feedback of the co-activation level
(the blue bar in Fig. 1B) was provided in the first 5 s of the trial, during
which the subjects had to maintain a target co-activation level. A
target level of 30% of the MVCA let them start the trial in the low
region and one of 70% MVCA in the high region. Note that the
co-activation feedback was switched off after the first 5 s, and the
remaining part of the trial was pursued similar to a free trial.

After a training trial in which frequencies were reversed, i.e., presented
in increasing order, the subjects performed five alternating sets of three
free and three forced trials (starting with a set of 3 free trials).

Visual feedback

The graphical user interface was also implemented in the LabVIEW
environment. The wrist movement amplitude was measured using a
position encoder (Hengsler RI58-O/5000AS.41RB), smoothed using a
500 ms moving average, and used (with a scaling factor of 1 cm/°) to
adjust the length of a red bar (Fig. 1B), which the subjects had to keep
inside the 3° target, i.e., the yellow band in Fig. 1B.

Protocol of experiments

The experiment for each subject followed the following sequence.

EMG CALIBRATION. EMG calibration is required because the base-
line and maximum EMG activities change within subjects due to
positioning of electrodes, skin properties, subject strength, and exter-
nal noise. In addition, the baseline EMG activity (EMG activity when
the subject is at rest) changes with the frequency of vibration of hand.

Between the experiment frequencies of 4 and 6.5 Hz, the baseline
EMG activity was found to vary linearly and with a maximum of
change of �10% MVCA. To reduce this difference and normalize to
subject strength, the experiment started with a calibration procedure.

The subject wrist was vibrated with a 3° amplitude sinusoidal signal of
5.25 Hz frequency, corresponding to the middle of the frequency range
during the main trials. EMG was recorded when the subject relaxed
completely, defining m0, and when he co-activated his muscles maxi-

mally, defining mmax. These values were used to calibrate the function of
Eq. 1 or 2 according to the subject capabilities as follows

�(t) �
m(t) � m0

mmax � m0
· 100

where m(t) is the instantaneous subject co-activation and �(t) the
normalized % of MVCA, which was used to compute the perturbation
amplitude using Eq 1 or 2.

CALIBRATION TESTING. To check that the subject can comfortably
perform the experiment, the same (3°, 5.25 Hz) sinusoidal perturba-
tion was applied while the subject was asked to maintain his or her
wrist co-coactivation level for 5 s each at 20, 40, 60, and 80% of
his/her MVCA. The subjects were aided in this task by a visual
feedback of their co-activation level. The ability to maintain these
co-activation levels indicated a successful calibration.

TRAINING TRIAL. The experiment started with a training session
where the subjects experienced perturbations with frequency increas-
ing from 4 to 6.5 Hz, in steps of 0.25 Hz with each frequency step
lasting 10 s. This session helped the subjects experience the system
and the task.

EXPERIMENT TRIALS. The training was followed by five alternating
sets of three forced or free trials each, starting with a set of free trials.
In each trial, the subjects experienced the same set of frequencies as
in the training trial, but in a decreasing sequence. Five subjects
experienced the first environment while 10 worked in the second
environment.

Subsidiary experiment

A separate subsidiary experiment was conducted with five subjects
to evaluate properties of the mapping learnt by the subjects. The
experiment aimed at evaluating if the memory was a time course of
muscle activations, or a mapping between muscle activation and
frequency, and investigated how and if the memory related behavior
is robust to sudden changes in disturbance frequency. The five
subjects performed four free trials in environment 2. The disturbance
frequency increased in the first three trials from 4 to 6.5 Hz while it
decreased from 6.5 to 4 Hz in the fourth trial. In addition, in the third
and fourth trials the disturbance frequency suddenly changed to a
previous value in the last ten seconds (Fig. 4B).

Data analysis

The intra set deviation in the co-activation trajectories was calcu-
lated by subtracting the mean set trajectory from each of the subject
trial trajectory and collecting the data points through the trial time
over 20 subjects. The SD of this collection was used to show that
subjects followed similar trajectories in all trials of a same set.

The co-activation difference plots of Figs. 2B and 3B were pro-
duced by subtracting the individual time points of each set trajectory
by the corresponding time point of the next set trajectory. The
absolute values of this subtraction (environment 1: 5 subjects x 11
time points � 55 data points; environment 2: 110 data points) were
then collected and the mean (total bar height) and SD (error bar)
plotted. Paired t-test between the data points gave the significance of
the set differences. In addition, the data points (55 in environment 1
and 110 in environment 2) were also subdivided into three categories
according to whether the subtracted time points of the two sets
corresponded to the same, in-between, or different regions. The mean
of each of the categories was shown in different colors to give a
quantitative measure of how the set differences corresponded to the
provided environment.

To quantify trajectory differences in the subsidiary experiment (Fig.
4B), the co-activation values corresponding to the same disturbance
frequency in the third and fourth trials were subtracted for each of the
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five subjects. This data (5 subjects � 12 points � 60 data points) were
collected, and a t-test was performed to determine difference from
zero. A similar procedure was used to determine the co-activation
difference between two occurrences of a disturbance frequency in the
same trial (orange lines in Fig. 4B). The difference of co-activation
value for the five subjects (5 subjects � 2 trials � 10 data points) were
collected and analyzed using a t-test as before.

R E S U L T S

No global optimization

In our experiments, subjects could keep their wrist joint
angle within the target while it was perturbed, either by
co-contracting, or conversely by relaxing their muscles. The
perturbation frequency was varied, which gave rise to trajec-
tories of the co-contraction level as a function of the time. The
results from five subjects performing this task in environment
1 of Fig. 1 are shown in Fig. 2A (detailed results are available
in the supplementary figures). The three trajectories performed
by each subject in the same set were very similar, with a mean
intra-set SD of �4.75% of the MVCA and are thus represented
by the mean set trajectory.

The subjects started the experiment with a set of free trials
(white traces of Fig. 2A). When forced to start in the other
region (blue trace in Fig. 2A), all subjects adopted a new
trajectory. In the next three free trials (green trace), the subjects
followed a trajectory similar to the one in the forced trials (as
shown by the absence of red in column 2 of Fig. 2B), with little
difference (�7% of MVCA) between the set trajectories (B).
After being forced back to the initial region (yellow trace), the
subjects again followed the forced trajectory in all the subse-
quent free trials (red trace).

By repeatedly letting a subject start in the low region, his or
her CNS was given the opportunity to explore the global
minimum where the task could be achieved with less effort.
After this exposure, the subsequent three free trials followed
the same trajectory as the forced trials, indicating that the CNS
realized the new trajectory. However, when forced back to the
local minimum of the high region, the subject similarly fol-
lowed the new, nonoptimal forced trajectories. This behavior
was consistent in all of the subjects tested (Figs. 2A and 3A and
Supplementary Fig. S1 and S2). The CNS clearly did not
consider the global minimum for adapting the motor behavior.
Even after having experienced the low region, subsequent free

FIG. 2. Trajectories that 5 subjects used to perform the task described in Fig. 1. A: traces represent the average trajectories over 10 s and 3 trials, and the
maximum and minimum (error bars) over the 3 trials of each set. After the 1st set of 3 free trials (white trace), the subjects were forced (blue) into the region
other than what they take in the 1st set, following which they make another set of free trials (green). They were then forced back into the 1st region (yellow)
and then let free again (red) in the last set (detailed plots available as Supplementary information). The average absolute co-activation difference between
consecutive set trajectories (B) were plotted for the subjects when the consecutive trajectories lie in the same (yellow) or different regions (red) and when either
one or both trajectories are crossing between regions (orange). The error bars show SD over the entire trial. The difference between consecutive forced and free
sets (2nd and 4th columns) is obviously lower (with P � 0.001) than that between the free and next forced set to the other region (1st and 3rd columns), while
the 2 tall and 2 short columns were equal in height (with P � 0.70 and P � 0.16, respectively). The shorter columns have no red and are mainly yellow, indicating
that for all the subjects, every free set was in the same region as the previous forced set. Note that the 2nd subject showed a tendency to jump regions in the
forced condition.
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trials were not performed in the low region which costs less
effort.

Evidence of motor memory

In all subjects, a strong tendency was observed to perform
free trials with a similar trajectory as they had chosen in the
preceding forced trials (as shown by the short columns 2 and 4
of Fig. 2B). If this corresponds to an effect of motor memory,
one could expect that the free trials also influence the subse-
quent forced trials. However, such a tendency was observed
only in one of the five subjects (Fig. 2A, 2nd panel), whose
forced trajectories, after the initial forced period, converged to
the previously performed free trajectories.

The large co-activation difference between the high and low
regions of the environment of Fig. 1 might have prevented this
tendency to express itself in the other four subjects. To test this
eventuality, 10 new subjects performed a second experiment
with a similar protocol but using environment 2 in which the
co-activation difference between the high and low regions
slowly decreased with time. We refer to this as a tapering
environment (Fig. 3). All these subjects again performed free
trials similar to the previous forced trials (Fig. 3A and Supple-
mentary Fig. S2), but, importantly, a similar tendency was now
also observed in the forced trials. The subjects initially used a
different region when forced to do so (red sections of columns
1 and 3 in Fig. 3A) but converged with time to the previous free
trials (yellow sections of columns 2 and 4), jumping over the

narrower intermediate region (orange sections of the columns
in Fig. 3B) to do so.

In the first set of free trials (white traces in Fig. 3A), 5 of the
10 subjects adopted the low region while the others used the
high region. Depending on the region selected in the first free
trials, the succeeding forced trials showed a tendency to follow
the previous free trials, jumping between regions to do so
(three jump to the low while seven toward high region). The
next free trials then followed the forced trials, again jumping
between the regions at the same frequency as the forced trials.

When the subjects jump between regions, the error and
effort (when jump is from low to high region) is high. How-
ever, they repeated the jump in the forced trials and then in all
the three free trials that follow. Even though the subjects saw
their error increasing during the jumps, they were still com-
pelled to repeat the same behavior in all the trials with jumps
taking place at about the same frequency each time.

These observations indicate the presence of a motor mem-
ory. This major determinant of motor behavior could even
over-weigh the error-effort cost if it was not large as was
demonstrated by the second experiment.

Local optimization

To interpret the way subjects performed the wrist muscles
co-contraction task, we assume that they tried to minimize a
generic cost function of error and effort of the form

FIG. 3. Motor memory in forced trials. Ten subjects performed in environment 2 with tapering intermediate band, of which 5 representative subjects are shown
in A. The trajectory differences (B) are plotted similar to Fig. 2B. Compared with the 1st experiment, a large part of the tall columns is orange as 4 of the 5 subjects
jumped across the regions in the forced trial to converge to the previous free trials.

387MOTOR MEMORY IMPEDES MOTOR OPTIMIZATION

J Neurophysiol • VOL 104 • JULY 2010 • www.jn.org

 on S
eptem

ber 21, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


V(e, u) � 	(e) � 
(|u|) (3)

where 	 and 
 are any positive, monotonically increasing
functions representing the error and effort costs, respectively,
e is the task error and u � (u1, . . . , un) the activation of the n
muscles involved in the task. While the effort cost is larger in
the high region than in the low region (Fig. 1E), the error cost
is similar in both of these regions (see Experiment and con-
trol). Therefore for any cost of the form given by Eq. 3, the
high region represents a local minimum while the low region
represents the global minimum of the cost function. The new
paradigm introduced in this paper is thus characterized by clear
and controllable multiple optima of the error-effort cost.

While global optimization was not observed, all 15 subjects
in these two experiments showed evidence of local optimiza-
tion of effort. As the task requirement did not specify any
particular amplitude below the target amplitude, error cost may
be considered to be constant within the high or low region
where the amplitude is within the target level. Proving local
minimization in this case is trivial, as all the subjects showed
a decrease of co-activation in the high region as the trial
proceeds, even when maintaining the same high level would
have satisfied the task.

However, the subjects may have tried to minimize their wrist
movement amplitude even once inside the target. In this case,
a more detailed proof of local minimization is required that we
show for the second environment that has more subjects to
analyze. Figure 4A shows the constant wrist movement ampli-
tude contours for the second environment. Except during
inter-region jumps, throughout each trial, all the subjects used
trajectories between the theoretical error optimal (red) trajec-
tory and effort optimal (blue) trajectory (Fig. 4A and Supple-
mentary Fig. S2), indicating that they minimize both error and
effort. Furthermore, note that in both the high and low regions,
where the task is satisfied, the contours have a slope of
�0.118%/s. Thus at any time point, while a negative trajectory
slope would decrease the co-activation, a slope smaller than
�0.118%/s would increase the wrist amplitude. The average
slope over all the trials across subjects (excluding the 1st 30 s

to avoid the inter region jump) was found to be �0.252%/s and
significantly smaller than the contour slope of �0.118%/s (P �
0.002). This means first that the subjects decreased the wrist
co-activation level, and hence effort, as keeping the same level
would still keep the red bar inside the yellow target. Second,
this means that they decreased the co-activation level, even if
this meant to increase the movement amplitude.

Subsidiary experiment

Finally, in the subsidiary experiment the subjects adopted the
same region in the third and fourth trials even when the distur-
bance frequency was reversed (P � 0.35). When the disturbance
frequency was changed abruptly (red arrow) in the last 10 s of the
(3rd and 4th) trials, the subjects revert back to the co-activation
level (P � 0.78) that they had used with the gradual frequency
change (orange lines) even when the current co-activation
would have satisfied the task.

Conclusion

Contrary to common intuition, the observations from the
preceding two environments indicated that vibratory distur-
bances did not necessarily lead to a high co-contraction in
subjects (with around half of the tested subjects took the low
region in their 1st free trials). When forced to do so, subjects
adopted a trajectory that did not minimize effort, even having
previously realized a lower effort trajectory. The effort differ-
ence being large between the two trajectories (�40% MVC in
environment 1), this behavior was not due to the inability of the
CNS to distinguish the two effort costs. The behavior seems to
originate from some motor memory, which compels the CNS
to follow a previous motor activation pattern even if it was not
globally optimal. However, co-activation could be relaxed
along a chosen trajectory yielding local minimization of effort.

While motor memory was shown to be present in every
(forced or free) movement, it was not always prevalent over
error and effort. The memory effect could be overweighed if
the error and effort cost is high as illustrated by the experiment

FIG. 4. Evidence of local optimization (A) and of the memorized mapping (B). The wrist amplitude contour map of the environment in A shows the similar
depth of the 2 regions in which the task is satisfied. In these regions, the wrist amplitude decreases as the co-activation increases and follows a slope of
�0.118%/s. Schematics of the (theoretical) optimum error minimization (red line) vs. pure energy minimization (blue line) have been plotted. All subject
trajectories from second environment were within the blue and red traces and have a slope less than the contours, i.e., �0.118%/s, thus showing local optimization
of effort by subjects. To check the nature of task mapping (B), 5 subjects (different color traces) performed 3 trials with perturbations of increasing frequencies
(top shows the 3rd trial) followed by a trial with decreasing frequencies (bottom). The subjects adopted the same region in the 2 trials with similar trajectories
(P � 0.35). When the disturbance frequency was changed abruptly (red arrow) in the last 10 seconds of the (3rd and 4th) trials, the subjects revert back to the
co-activation level (P � 0.78) that they had used with the gradual frequency change (orange lines). This shows the presence of a mapping between disturbance
frequency and co-activation. The trajectories are plotted as in Fig. 2A.
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of Fig. 2 and conversely the memory could over-weigh the
error- effort cost (jumping behavior of Fig. 3). Thus it seems
that motor memory, error and effort together determine the
subject behavior.

D I S C U S S I O N

Study of optimization in motor control has typically focused
on tasks involving a single optimum, perhaps because of a
belief that the human CNS can always converge to the optimal
solution with sufficient experience. However, many motor
tasks are characterized by multiple optima, and the conver-
gence to optimal muscle activation patterns may be very
difficult due to complex dynamics of the musculoskeletal
system. In this context, our experiments enabled a systematic
investigation of optimization in tasks with multiple optima.

The first main observation from the experimental results is
that the realization of the global optimum (in terms of being
able to independently track it) is not sufficient to adopt it. Even
in our simple one joint paradigm, when the subjects were
forced away from a realized global optimum, they kept the
forced nonoptimal trajectory in the following free trials instead
of going back to the optimal trajectory that they had previously
performed.

This behavior seems to originate from some unconscious
memory of the muscle activations that prevents immediate
change of activation patterns in consecutive trials. We used a
qualitative questionnaire to examine what the subjects believed
they were doing. When asked if they had any particular
behavioral strategy during the task, 8 of the 10 subjects (who
performed in environment 2) replied that they had none and
only tried to keep their wrist movement inside the target as
much as possible. The two other subjects replied that they tried
to maintain a constant co-activation level once they saw the
task was being satisfied though their co-activation level varied
over time similar to the other subjects. Seven of the subjects
confirmed that they had no difficulty starting at a given level in
the forced trials, whereas three replied that they found the first
forced trial difficult and the subsequent ones easier, which
would correspond well to the formation of a memory in the first
forced trial and its use in subsequent trials. In summary, the
subjects seemed to believe that they performed a visual feed-
back task and were completely unaware of the repetitive
pattern in their behavior. This pointed to the fact that this
behavior was not an assimilation of distinct discrete choices by
the subjects.

In psychology, memory is defined as an organism’s ability to
store, retain, and recall information, and information pertaining
to muscle activations is referred to as motor memory. Motor
memory has been examined extensively (Adams and Dijkstra
1968; Stamm and Kelso 1978; Stelmach and Kelso 1975) as a
conscious recollection process but not as an unconscious pro-
cess that can interfere with behavior. While motor pattern
retention effects were presented in recent studies (Muller and
Sternad 2004; Quaney et al. 2003), our study shows for the first
time through a multi-solution task that motor memory can
impede optimality of motor behaviors.

The subsidiary experiment examined how this motor mem-
ory works. As one can see in Fig. 4B, the subjects adopted a
similar level of co-contraction as they had used previously,
when the frequencies were reversed or changed suddenly (even

when the current level would have satisfied the task). This
indicated that the observed behavior cannot be attributed to
memory of instructions given to the subject (like in the forced
trials) but originates from a mapping between motor activation
and disturbance frequency.

However, these results were obtained with an essentially
isometric task. Although in the bicycle and water in cup
examples (in INTRODUCTION), the perturbations are in the null
space of the movement and thus essentially isometric, in other
real situations, the dynamics of the body will also interact with
these perturbations and may also provide additional feedback
that is absent in our setup. Therefore while it is not completely
clear how the observed effects would translate to movement
tasks, our results show an example where the variables com-
monly presumed to determine motor behavior (error and effort
being the most popular) do not capture human behavior com-
pletely. In relatively common multi-solution tasks involving
muscle co-activation, motor memory may be an important
factor that significantly influences motor optimization.

On the other hand motor memory and local optimization
may also be affecting movement tasks. This is illustrated in
sports by the catastrophic evolution of the high jump style.
After years of adaptation, by the 1960s, the “straddle” style of
high jump was considered to be most efficient until a self-
styled athlete called Dick Fosbury introduced the “Fosbury
flop,” a radically new style that can be shown to be more effort
efficient than the straddle (Dopena 1980). Although this crude
example may have involved other logistical factors, it shows
that even after years of exploration, we may not be performing
tasks optimally. The large kinematic differences between the
straddle and the Fosbury flop gives some indication of how
difficult it can be to converge from a sub-optimal local opti-
mum (like straddle) to the global optimum (like that of the
Fosbury flop).

Therefore instead of attempting global optimization, the
CNS may rather remember any task satisfying solution and use
it to solve the task. This behavior corresponds to the motor
memory observed in our results, where even after previous
exposure to the optimal solution, the CNS followed the recent
sub-optimal solution. The muscle activations can however be
locally optimized (Franklin et al. 2008).

Although our study did not check for retention effects over
days, we checked to confirm that a chosen sub-optimal solution
did not change even with continuous environment exposure of
�1 h. Considering that consolidation is known to occur in
much shorter time periods (Smith et al. 2006), this suggests the
importance of training “correct” motor behaviors in rehabili-
tation and physical education.

While the CNS can automatically optimize tasks locally,
global optimization of effort and error may require a conscious
effort by the individual or an external influence as in the forced
behavior of our experiment. A teaching signal or reference like
that of Fosbury may be required to make the CNS realize a
globally optimal behavior. The competitive advantage of opti-
mal behaviors may explain why the human brain is equipped
with explicit networks for imitation learning (Rizolatti and
Craighero 2004). Imitation behavior may help humans achieve
gross convergence to globally optimal solutions realized by
experienced individuals, while local optimization of newly
adopted behaviors in regard of error and effort would automat-
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ically arise with repeated practice (Franklin et al. 2008; Izawa
et al. 2008).
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